NASA艾姆斯可持续发展基地太阳能发电的神经网络预测

C. Poolla, Abe Ishihara, Steven Rosenberg, Rodney A. Martin, A. Fong, S. Ray, Chandrayee Basu
{"title":"NASA艾姆斯可持续发展基地太阳能发电的神经网络预测","authors":"C. Poolla, Abe Ishihara, Steven Rosenberg, Rodney A. Martin, A. Fong, S. Ray, Chandrayee Basu","doi":"10.1109/CIASG.2014.7011545","DOIUrl":null,"url":null,"abstract":"Solar power prediction remains an important challenge for renewable energy integration primarily due to its inherent variability and intermittency. In this work, a neural network based solar power forecasting framework is developed for the NASA Ames Sustainability Base (SB) solar array using the publicly available National Oceanic and Atmospheric Administration (NOAA) weather data forecasts. The prediction inputs include temperature, irradiance and wind speed obtained through the NOAA NOMADS server in real-time. The neural network (ANN) is trained and tested on input-output data from on-site sensors. The NOAA archived forecast data is then input to the trained ANN model to predict power output spanning over nine months (June 2013-March 2014). The efficacy of the model is determined by comparing predicted power output against on-site sensor data.","PeriodicalId":166543,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Neural network forecasting of solar power for NASA Ames sustainability base\",\"authors\":\"C. Poolla, Abe Ishihara, Steven Rosenberg, Rodney A. Martin, A. Fong, S. Ray, Chandrayee Basu\",\"doi\":\"10.1109/CIASG.2014.7011545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar power prediction remains an important challenge for renewable energy integration primarily due to its inherent variability and intermittency. In this work, a neural network based solar power forecasting framework is developed for the NASA Ames Sustainability Base (SB) solar array using the publicly available National Oceanic and Atmospheric Administration (NOAA) weather data forecasts. The prediction inputs include temperature, irradiance and wind speed obtained through the NOAA NOMADS server in real-time. The neural network (ANN) is trained and tested on input-output data from on-site sensors. The NOAA archived forecast data is then input to the trained ANN model to predict power output spanning over nine months (June 2013-March 2014). The efficacy of the model is determined by comparing predicted power output against on-site sensor data.\",\"PeriodicalId\":166543,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIASG.2014.7011545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIASG.2014.7011545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

由于其固有的可变性和间歇性,太阳能发电预测仍然是可再生能源整合的一个重要挑战。在这项工作中,利用美国国家海洋和大气管理局(NOAA)公开的天气数据预报,为美国宇航局艾姆斯可持续发展基地(SB)太阳能阵列开发了一个基于神经网络的太阳能预测框架。预测输入包括通过NOAA NOMADS服务器实时获取的温度、辐照度和风速。利用现场传感器的输入输出数据对神经网络进行训练和测试。然后将NOAA存档的预测数据输入到训练好的人工神经网络模型中,以预测九个月(2013年6月至2014年3月)的功率输出。通过比较预测输出功率与现场传感器数据来确定模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network forecasting of solar power for NASA Ames sustainability base
Solar power prediction remains an important challenge for renewable energy integration primarily due to its inherent variability and intermittency. In this work, a neural network based solar power forecasting framework is developed for the NASA Ames Sustainability Base (SB) solar array using the publicly available National Oceanic and Atmospheric Administration (NOAA) weather data forecasts. The prediction inputs include temperature, irradiance and wind speed obtained through the NOAA NOMADS server in real-time. The neural network (ANN) is trained and tested on input-output data from on-site sensors. The NOAA archived forecast data is then input to the trained ANN model to predict power output spanning over nine months (June 2013-March 2014). The efficacy of the model is determined by comparing predicted power output against on-site sensor data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信