K. Grenier, P. Pons, T. Parra, R. Plana, J. Graffeuil
{"title":"毫米波应用的硅微机电系统","authors":"K. Grenier, P. Pons, T. Parra, R. Plana, J. Graffeuil","doi":"10.1117/12.382269","DOIUrl":null,"url":null,"abstract":"A new fully silicon MEM technology and design methodology is introduced to realize millimeter-wave applications such as switches. It is based on two kinds of micro-machining techniques: a bulk micro-machines used to realize micro-wave circuits on a suspended membrane in order to decrease losses, and a surface micro-machining to make air-bridges actuable by electrostatic force. A MEM bridge electrical model has been investigated and implemented in the design of distributed switches.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon micro-electro-mechanical systems for millimeter-wave applications\",\"authors\":\"K. Grenier, P. Pons, T. Parra, R. Plana, J. Graffeuil\",\"doi\":\"10.1117/12.382269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new fully silicon MEM technology and design methodology is introduced to realize millimeter-wave applications such as switches. It is based on two kinds of micro-machining techniques: a bulk micro-machines used to realize micro-wave circuits on a suspended membrane in order to decrease losses, and a surface micro-machining to make air-bridges actuable by electrostatic force. A MEM bridge electrical model has been investigated and implemented in the design of distributed switches.\",\"PeriodicalId\":318748,\"journal\":{\"name\":\"Design, Test, Integration, and Packaging of MEMS/MOEMS\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design, Test, Integration, and Packaging of MEMS/MOEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.382269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Test, Integration, and Packaging of MEMS/MOEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.382269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon micro-electro-mechanical systems for millimeter-wave applications
A new fully silicon MEM technology and design methodology is introduced to realize millimeter-wave applications such as switches. It is based on two kinds of micro-machining techniques: a bulk micro-machines used to realize micro-wave circuits on a suspended membrane in order to decrease losses, and a surface micro-machining to make air-bridges actuable by electrostatic force. A MEM bridge electrical model has been investigated and implemented in the design of distributed switches.