{"title":"一款低功耗放流混频器,具有改进的低射频隔离,适用于ZigBee应用","authors":"G. Tan, R. Sidek, M. Isa, S. Shafie","doi":"10.1109/CIRCUITSANDSYSTEMS.2013.6671642","DOIUrl":null,"url":null,"abstract":"This paper present a low power current bleeding CMOS mixer with high LO-RF isolation for ZigBee application. The proposed mixer uses current reuse technique with self-biased transconductance stage to increase the conversion gain while substantially reducing the DC power dissipation. A NMOS current bleeding transistor and load resistor is integrated between the RF transconductance and LO switching stage to improve the LO-RF isolation. This mixer is verified in 0.13 μm standard CMOS technology. The simulation result shows a high conversion gain (CG) of 12 dB, 1 dB compression point (P1dB) of -13.4 dBm, third-order intercept point (IIP3) of -4.3 dBm and a noise figure (NF) of 15.45 dB. The circuit consumes 664 μA current from 1.2 V power supply and LO-RF isolation is improved by 25 dB.","PeriodicalId":436232,"journal":{"name":"2013 IEEE International Conference on Circuits and Systems (ICCAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A low-power current bleeding mixer with improved LO-RF isolation for ZigBee application\",\"authors\":\"G. Tan, R. Sidek, M. Isa, S. Shafie\",\"doi\":\"10.1109/CIRCUITSANDSYSTEMS.2013.6671642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper present a low power current bleeding CMOS mixer with high LO-RF isolation for ZigBee application. The proposed mixer uses current reuse technique with self-biased transconductance stage to increase the conversion gain while substantially reducing the DC power dissipation. A NMOS current bleeding transistor and load resistor is integrated between the RF transconductance and LO switching stage to improve the LO-RF isolation. This mixer is verified in 0.13 μm standard CMOS technology. The simulation result shows a high conversion gain (CG) of 12 dB, 1 dB compression point (P1dB) of -13.4 dBm, third-order intercept point (IIP3) of -4.3 dBm and a noise figure (NF) of 15.45 dB. The circuit consumes 664 μA current from 1.2 V power supply and LO-RF isolation is improved by 25 dB.\",\"PeriodicalId\":436232,\"journal\":{\"name\":\"2013 IEEE International Conference on Circuits and Systems (ICCAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Circuits and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRCUITSANDSYSTEMS.2013.6671642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Circuits and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRCUITSANDSYSTEMS.2013.6671642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-power current bleeding mixer with improved LO-RF isolation for ZigBee application
This paper present a low power current bleeding CMOS mixer with high LO-RF isolation for ZigBee application. The proposed mixer uses current reuse technique with self-biased transconductance stage to increase the conversion gain while substantially reducing the DC power dissipation. A NMOS current bleeding transistor and load resistor is integrated between the RF transconductance and LO switching stage to improve the LO-RF isolation. This mixer is verified in 0.13 μm standard CMOS technology. The simulation result shows a high conversion gain (CG) of 12 dB, 1 dB compression point (P1dB) of -13.4 dBm, third-order intercept point (IIP3) of -4.3 dBm and a noise figure (NF) of 15.45 dB. The circuit consumes 664 μA current from 1.2 V power supply and LO-RF isolation is improved by 25 dB.