二值化神经网络的高能效模拟突触/神经元电路

Jaehyun Kim, Chaeun Lee, Kiyoung Choi
{"title":"二值化神经网络的高能效模拟突触/神经元电路","authors":"Jaehyun Kim, Chaeun Lee, Kiyoung Choi","doi":"10.1109/ISOCC.2018.8649929","DOIUrl":null,"url":null,"abstract":"Energy efficiency is one of the most important factors to make deep neural networks viable in embedded systems. In this paper, we propose an analog synapse circuit using resistive random access memory (ReRAM) which operates with a switched capacitor neuron for binarized neural networks (BNNs). Thanks to the compact and energy efficient ReRAM synapses, the circuit simulation results of an MLP implemented with the proposed synapse and neuron circuits show 2.5ns classification latency and very high energy efficiency of 1536TOPS/W on 32nm technology.","PeriodicalId":127156,"journal":{"name":"2018 International SoC Design Conference (ISOCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Efficient Analog Synapse/Neuron Circuit for Binarized Neural Networks\",\"authors\":\"Jaehyun Kim, Chaeun Lee, Kiyoung Choi\",\"doi\":\"10.1109/ISOCC.2018.8649929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is one of the most important factors to make deep neural networks viable in embedded systems. In this paper, we propose an analog synapse circuit using resistive random access memory (ReRAM) which operates with a switched capacitor neuron for binarized neural networks (BNNs). Thanks to the compact and energy efficient ReRAM synapses, the circuit simulation results of an MLP implemented with the proposed synapse and neuron circuits show 2.5ns classification latency and very high energy efficiency of 1536TOPS/W on 32nm technology.\",\"PeriodicalId\":127156,\"journal\":{\"name\":\"2018 International SoC Design Conference (ISOCC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC.2018.8649929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2018.8649929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

能效是影响深度神经网络在嵌入式系统中应用的重要因素之一。在本文中,我们提出了一种使用电阻随机存取存储器(ReRAM)的模拟突触电路,该电路与二值化神经网络(bnn)的开关电容神经元一起工作。由于ReRAM突触结构紧凑且高能效,采用所提出的突触和神经元电路实现的MLP电路仿真结果显示,在32nm技术下,分类延迟为2.5ns,能量效率高达1536TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficient Analog Synapse/Neuron Circuit for Binarized Neural Networks
Energy efficiency is one of the most important factors to make deep neural networks viable in embedded systems. In this paper, we propose an analog synapse circuit using resistive random access memory (ReRAM) which operates with a switched capacitor neuron for binarized neural networks (BNNs). Thanks to the compact and energy efficient ReRAM synapses, the circuit simulation results of an MLP implemented with the proposed synapse and neuron circuits show 2.5ns classification latency and very high energy efficiency of 1536TOPS/W on 32nm technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信