PDE解泛函下界和上界的并行计算方法:在功能梯度材料j积分中的应用

Z. Xuan
{"title":"PDE解泛函下界和上界的并行计算方法:在功能梯度材料j积分中的应用","authors":"Z. Xuan","doi":"10.1109/PAAP.2011.48","DOIUrl":null,"url":null,"abstract":"A parallel computing procedure for computing the bounds on the {\\it J}-integral in functionally graded materials is presented based on a Neumann element a-posteriori error bound. The finite element solution of {\\it J}-integral is first obtained on a coarser finite element mesh, then a-posteriori bounding procedure based on the finite element error estimate is used to compute the lower and upper bounds on the {\\it J}-integral. The computation of the error estimate is performed by solving independent elemental Neumann sub problems decomposed from the finite element model, thus the computing procedure is parallel and potential to solve large scale structural problems. An example is given in the end of paper to compute the lower and upper bounds on the {\\it J}-integral of functionally graded materials.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Computing Procedure for the Lower and Upper Bounds on the Functionals of Solutions to PDE: Application to the J-Integral in Functionally Graded Materials\",\"authors\":\"Z. Xuan\",\"doi\":\"10.1109/PAAP.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parallel computing procedure for computing the bounds on the {\\\\it J}-integral in functionally graded materials is presented based on a Neumann element a-posteriori error bound. The finite element solution of {\\\\it J}-integral is first obtained on a coarser finite element mesh, then a-posteriori bounding procedure based on the finite element error estimate is used to compute the lower and upper bounds on the {\\\\it J}-integral. The computation of the error estimate is performed by solving independent elemental Neumann sub problems decomposed from the finite element model, thus the computing procedure is parallel and potential to solve large scale structural problems. An example is given in the end of paper to compute the lower and upper bounds on the {\\\\it J}-integral of functionally graded materials.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于诺伊曼元后验误差界的功能梯度材料{\it J}积分界的并行计算方法。首先在较粗的有限元网格上得到{\it J}-积分的有限元解,然后利用基于有限元误差估计的后验边界法计算{\it J}-积分的下界和上界。误差估计的计算是通过求解由有限元模型分解而成的独立元素Neumann子问题来完成的,因此计算过程是并行的,具有求解大规模结构问题的潜力。最后给出了一个计算功能梯度材料{\it J}积分下界和上界的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Computing Procedure for the Lower and Upper Bounds on the Functionals of Solutions to PDE: Application to the J-Integral in Functionally Graded Materials
A parallel computing procedure for computing the bounds on the {\it J}-integral in functionally graded materials is presented based on a Neumann element a-posteriori error bound. The finite element solution of {\it J}-integral is first obtained on a coarser finite element mesh, then a-posteriori bounding procedure based on the finite element error estimate is used to compute the lower and upper bounds on the {\it J}-integral. The computation of the error estimate is performed by solving independent elemental Neumann sub problems decomposed from the finite element model, thus the computing procedure is parallel and potential to solve large scale structural problems. An example is given in the end of paper to compute the lower and upper bounds on the {\it J}-integral of functionally graded materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信