Lingxiao Xue, V. Galigekere, G. Su, R. Zeng, Mostak Mohammad, E. Gurpinar, Shajjad Chowdhury, O. Onar
{"title":"200kw电动汽车动态无线充电系统设计与分析","authors":"Lingxiao Xue, V. Galigekere, G. Su, R. Zeng, Mostak Mohammad, E. Gurpinar, Shajjad Chowdhury, O. Onar","doi":"10.1109/APEC43599.2022.9773670","DOIUrl":null,"url":null,"abstract":"Dynamic wireless charging of electric vehicles can significantly alleviate or eliminate range anxiety while reducing the required on-board battery capacity. To achieve an electric vehicle charging balance with minimal infrastructure costs, power transfer levels around 200 kW are required. In this paper, a system architecture with a modularized power electronics and optimized power transfer couplers was adopted to enable efficient power transfer. A DC/DC converter was used for secondary-side charging control of the battery. The system performance was validated in an experimental setup at 120 kW with 91.31% efficiency from the DC input on the primary side to the vehicle battery.","PeriodicalId":127006,"journal":{"name":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and Analysis of a 200 kW Dynamic Wireless Charging System for Electric Vehicles\",\"authors\":\"Lingxiao Xue, V. Galigekere, G. Su, R. Zeng, Mostak Mohammad, E. Gurpinar, Shajjad Chowdhury, O. Onar\",\"doi\":\"10.1109/APEC43599.2022.9773670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic wireless charging of electric vehicles can significantly alleviate or eliminate range anxiety while reducing the required on-board battery capacity. To achieve an electric vehicle charging balance with minimal infrastructure costs, power transfer levels around 200 kW are required. In this paper, a system architecture with a modularized power electronics and optimized power transfer couplers was adopted to enable efficient power transfer. A DC/DC converter was used for secondary-side charging control of the battery. The system performance was validated in an experimental setup at 120 kW with 91.31% efficiency from the DC input on the primary side to the vehicle battery.\",\"PeriodicalId\":127006,\"journal\":{\"name\":\"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC43599.2022.9773670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43599.2022.9773670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of a 200 kW Dynamic Wireless Charging System for Electric Vehicles
Dynamic wireless charging of electric vehicles can significantly alleviate or eliminate range anxiety while reducing the required on-board battery capacity. To achieve an electric vehicle charging balance with minimal infrastructure costs, power transfer levels around 200 kW are required. In this paper, a system architecture with a modularized power electronics and optimized power transfer couplers was adopted to enable efficient power transfer. A DC/DC converter was used for secondary-side charging control of the battery. The system performance was validated in an experimental setup at 120 kW with 91.31% efficiency from the DC input on the primary side to the vehicle battery.