用于阻抗谱的低频CMOS正弦振荡器

Nagaraja Revanna, T. R. Viswanathan
{"title":"用于阻抗谱的低频CMOS正弦振荡器","authors":"Nagaraja Revanna, T. R. Viswanathan","doi":"10.1109/DCAS.2014.6965342","DOIUrl":null,"url":null,"abstract":"Impedance measurement as a function of frequency is being increasingly used for the detection of organic molecules. The main building block required for this is a sinusoidal oscillator whose frequency can be varied in the range of a few kHz to tens of MHz. Considering the low frequency end of the range, the design challenge is to get an on-chip oscillator without the need for large external components. The design of an Integrated CMOS Oscillator Circuit based on the Wien Bridge is presented. It provides both in-phase and quadrature outputs needed for the determination of the real and imaginary parts of complex impedances. A novel circuit for detecting and controlling the amplitude of oscillation without the need for on-chip low frequency filtering is described. Since this oscillator is used in an inexpensive portable hand-held instrument, both power consumption and chip area must be minimized.","PeriodicalId":138665,"journal":{"name":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low frequency CMOS sinusoidal oscillator for impedance spectroscopy\",\"authors\":\"Nagaraja Revanna, T. R. Viswanathan\",\"doi\":\"10.1109/DCAS.2014.6965342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impedance measurement as a function of frequency is being increasingly used for the detection of organic molecules. The main building block required for this is a sinusoidal oscillator whose frequency can be varied in the range of a few kHz to tens of MHz. Considering the low frequency end of the range, the design challenge is to get an on-chip oscillator without the need for large external components. The design of an Integrated CMOS Oscillator Circuit based on the Wien Bridge is presented. It provides both in-phase and quadrature outputs needed for the determination of the real and imaginary parts of complex impedances. A novel circuit for detecting and controlling the amplitude of oscillation without the need for on-chip low frequency filtering is described. Since this oscillator is used in an inexpensive portable hand-held instrument, both power consumption and chip area must be minimized.\",\"PeriodicalId\":138665,\"journal\":{\"name\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2014.6965342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2014.6965342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

阻抗测量作为频率的函数越来越多地用于有机分子的检测。为此所需的主要构建块是一个正弦振荡器,其频率可以在几kHz到几十MHz的范围内变化。考虑到范围的低频端,设计挑战是在不需要大型外部元件的情况下获得片上振荡器。介绍了一种基于Wien桥的集成CMOS振荡器电路的设计。它提供了确定复杂阻抗的实部和虚部所需的同相和正交输出。本文提出了一种无需片上低频滤波即可检测和控制振荡幅度的新型电路。由于该振荡器用于廉价的便携式手持仪器,因此功耗和芯片面积都必须最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low frequency CMOS sinusoidal oscillator for impedance spectroscopy
Impedance measurement as a function of frequency is being increasingly used for the detection of organic molecules. The main building block required for this is a sinusoidal oscillator whose frequency can be varied in the range of a few kHz to tens of MHz. Considering the low frequency end of the range, the design challenge is to get an on-chip oscillator without the need for large external components. The design of an Integrated CMOS Oscillator Circuit based on the Wien Bridge is presented. It provides both in-phase and quadrature outputs needed for the determination of the real and imaginary parts of complex impedances. A novel circuit for detecting and controlling the amplitude of oscillation without the need for on-chip low frequency filtering is described. Since this oscillator is used in an inexpensive portable hand-held instrument, both power consumption and chip area must be minimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信