使用大数据技术的Twitter数据分类

Madani Youness, Erritali Mohammed, Ben Jamâa
{"title":"使用大数据技术的Twitter数据分类","authors":"Madani Youness, Erritali Mohammed, Ben Jamâa","doi":"10.1145/3230348.3230368","DOIUrl":null,"url":null,"abstract":"Tweets classification or in general the classification of the social network's data is a recent field of scientific research, where researchers look for new methods to classify users data (tweets, Facebook's post...) into classes (positive, negative, neutral).This type of scientific research called sentiment analysis (SA) or opinion mining and it allows to extract the feelings, opinions or attitudes expressed in a tweet or a facebook post ... In this article, we describe how we can collect and store a large volume of data, which is in the form of tweets, in Hadoop Distributed File System (HDFS), and how we can classify these tweets using different classification methods, making a comparison between the well-known machine learning algorithms and a dictionary based-approach using the AFINN dictionary. The experimental results show that the AFINN dictionary outperforms the well-known machine learning algorithms.","PeriodicalId":188878,"journal":{"name":"Proceedings of the 2018 1st International Conference on Internet and e-Business","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Twitter Data Classification Using Big Data Technologies\",\"authors\":\"Madani Youness, Erritali Mohammed, Ben Jamâa\",\"doi\":\"10.1145/3230348.3230368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tweets classification or in general the classification of the social network's data is a recent field of scientific research, where researchers look for new methods to classify users data (tweets, Facebook's post...) into classes (positive, negative, neutral).This type of scientific research called sentiment analysis (SA) or opinion mining and it allows to extract the feelings, opinions or attitudes expressed in a tweet or a facebook post ... In this article, we describe how we can collect and store a large volume of data, which is in the form of tweets, in Hadoop Distributed File System (HDFS), and how we can classify these tweets using different classification methods, making a comparison between the well-known machine learning algorithms and a dictionary based-approach using the AFINN dictionary. The experimental results show that the AFINN dictionary outperforms the well-known machine learning algorithms.\",\"PeriodicalId\":188878,\"journal\":{\"name\":\"Proceedings of the 2018 1st International Conference on Internet and e-Business\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 1st International Conference on Internet and e-Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3230348.3230368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 1st International Conference on Internet and e-Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230348.3230368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推文分类或一般的社交网络数据分类是最近的一个科学研究领域,研究人员寻找新的方法将用户数据(推文,Facebook的帖子…)分类(积极,消极,中性)。这种类型的科学研究被称为情感分析(SA)或观点挖掘,它可以提取推特或facebook帖子中表达的情感、观点或态度……在本文中,我们描述了如何在Hadoop分布式文件系统(HDFS)中收集和存储大量推文形式的数据,以及如何使用不同的分类方法对这些推文进行分类,并将众所周知的机器学习算法与使用AFINN字典的基于字典的方法进行比较。实验结果表明,AFINN词典优于常用的机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter Data Classification Using Big Data Technologies
Tweets classification or in general the classification of the social network's data is a recent field of scientific research, where researchers look for new methods to classify users data (tweets, Facebook's post...) into classes (positive, negative, neutral).This type of scientific research called sentiment analysis (SA) or opinion mining and it allows to extract the feelings, opinions or attitudes expressed in a tweet or a facebook post ... In this article, we describe how we can collect and store a large volume of data, which is in the form of tweets, in Hadoop Distributed File System (HDFS), and how we can classify these tweets using different classification methods, making a comparison between the well-known machine learning algorithms and a dictionary based-approach using the AFINN dictionary. The experimental results show that the AFINN dictionary outperforms the well-known machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信