跳跃-扩散过程下南非股票期权价格的概率推断

W. Mongwe, T. Sidogi, R. Mbuvha, T. Marwala
{"title":"跳跃-扩散过程下南非股票期权价格的概率推断","authors":"W. Mongwe, T. Sidogi, R. Mbuvha, T. Marwala","doi":"10.1109/CIFEr52523.2022.9776189","DOIUrl":null,"url":null,"abstract":"Jump-diffusion processes have been utilised to capture the leptokurtic nature of asset returns and to fit the market observed option volatility skew with great success. These models can be calibrated to historical share price data or forward-looking option market data. In this work, we infer South African equity option prices using the Bayesian inference framework. This approach allows one to attain uncertainties in the parameters of the calibrated models and confidence intervals with any predictions produced with the models. We calibrate the one-dimensional Merton jump-diffusion model to European put and call option data on the All-Share price index using Markov Chain Monte Carlo methods: the Metropolis Adjusted Langevin Algorithm, Hamiltonian Monte Carlo, and the No-U-Turn Sampler. Our approach produces a distribution of the jump-diffusion model parameters, which can be used to build economic scenario generators and price exotic options such as those embedded in life insurance contracts. The empirical results show that our approach can, on test data, exactly price all put option prices regardless of their moneyness, with slight miss-pricing on very deep in the money calls.","PeriodicalId":234473,"journal":{"name":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic Inference of South African Equity Option Prices Under Jump-Diffusion Processes\",\"authors\":\"W. Mongwe, T. Sidogi, R. Mbuvha, T. Marwala\",\"doi\":\"10.1109/CIFEr52523.2022.9776189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jump-diffusion processes have been utilised to capture the leptokurtic nature of asset returns and to fit the market observed option volatility skew with great success. These models can be calibrated to historical share price data or forward-looking option market data. In this work, we infer South African equity option prices using the Bayesian inference framework. This approach allows one to attain uncertainties in the parameters of the calibrated models and confidence intervals with any predictions produced with the models. We calibrate the one-dimensional Merton jump-diffusion model to European put and call option data on the All-Share price index using Markov Chain Monte Carlo methods: the Metropolis Adjusted Langevin Algorithm, Hamiltonian Monte Carlo, and the No-U-Turn Sampler. Our approach produces a distribution of the jump-diffusion model parameters, which can be used to build economic scenario generators and price exotic options such as those embedded in life insurance contracts. The empirical results show that our approach can, on test data, exactly price all put option prices regardless of their moneyness, with slight miss-pricing on very deep in the money calls.\",\"PeriodicalId\":234473,\"journal\":{\"name\":\"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFEr52523.2022.9776189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr52523.2022.9776189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

跳跃-扩散过程已被用于捕捉资产回报的轻峰性质,并成功地拟合市场观察到的期权波动率偏差。这些模型可以校准历史股价数据或前瞻性期权市场数据。在这项工作中,我们使用贝叶斯推理框架推断南非股票期权价格。这种方法允许人们获得校准模型参数的不确定性,以及模型产生的任何预测的置信区间。我们使用马尔科夫链蒙特卡罗方法:大都市调整朗格万算法、哈密顿蒙特卡罗算法和No-U-Turn采样器,对全股价指数上的欧洲看跌期权和看涨期权数据的一维默顿跳跃扩散模型进行校准。我们的方法产生了跳跃扩散模型参数的分布,可用于构建经济情景生成器和为外来期权(如嵌入人寿保险合同的期权)定价。实证结果表明,在测试数据上,我们的方法可以准确地对所有看跌期权的价格进行定价,而不考虑其货币性,对非常深的看涨期权的定价略有偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Inference of South African Equity Option Prices Under Jump-Diffusion Processes
Jump-diffusion processes have been utilised to capture the leptokurtic nature of asset returns and to fit the market observed option volatility skew with great success. These models can be calibrated to historical share price data or forward-looking option market data. In this work, we infer South African equity option prices using the Bayesian inference framework. This approach allows one to attain uncertainties in the parameters of the calibrated models and confidence intervals with any predictions produced with the models. We calibrate the one-dimensional Merton jump-diffusion model to European put and call option data on the All-Share price index using Markov Chain Monte Carlo methods: the Metropolis Adjusted Langevin Algorithm, Hamiltonian Monte Carlo, and the No-U-Turn Sampler. Our approach produces a distribution of the jump-diffusion model parameters, which can be used to build economic scenario generators and price exotic options such as those embedded in life insurance contracts. The empirical results show that our approach can, on test data, exactly price all put option prices regardless of their moneyness, with slight miss-pricing on very deep in the money calls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信