{"title":"热阻对环境温度和实际温度的依赖性","authors":"J. Paasschens, S. Harmsma, R. van der Toorn","doi":"10.1109/BIPOL.2004.1365754","DOIUrl":null,"url":null,"abstract":"We investigate the temperature dependence of thermal resistance. We extract the thermal resistance as a function of ambient temperature. The increase of thermal resistance due to self-heating leads to a non-linear relation between temperature and power dissipation. We show how to implement this in a compact model and what its effect is on simulations at high power dissipation.","PeriodicalId":447762,"journal":{"name":"Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Dependence of thermal resistance on ambient and actual temperature\",\"authors\":\"J. Paasschens, S. Harmsma, R. van der Toorn\",\"doi\":\"10.1109/BIPOL.2004.1365754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the temperature dependence of thermal resistance. We extract the thermal resistance as a function of ambient temperature. The increase of thermal resistance due to self-heating leads to a non-linear relation between temperature and power dissipation. We show how to implement this in a compact model and what its effect is on simulations at high power dissipation.\",\"PeriodicalId\":447762,\"journal\":{\"name\":\"Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIPOL.2004.1365754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIPOL.2004.1365754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependence of thermal resistance on ambient and actual temperature
We investigate the temperature dependence of thermal resistance. We extract the thermal resistance as a function of ambient temperature. The increase of thermal resistance due to self-heating leads to a non-linear relation between temperature and power dissipation. We show how to implement this in a compact model and what its effect is on simulations at high power dissipation.