渐近增长的鲁棒最大化

C. Kardaras, Scott Robertson
{"title":"渐近增长的鲁棒最大化","authors":"C. Kardaras, Scott Robertson","doi":"10.1214/11-AAP802","DOIUrl":null,"url":null,"abstract":"This paper addresses the question of how to invest in a robust growth-optimal way in a market where the instantaneous expected return of the underlying process is unknown. The optimal investment strategy is identified using a generalized version of the principal eigenfunction for an elliptic second-order differential operator which depends on the covariance structure of the underlying process used for investing. The robust growth-optimal strategy can also be seen as a limit, as the terminal date goes to infinity, of optimal arbitrages in the terminology of Fernholz and Karatzas.","PeriodicalId":359449,"journal":{"name":"LSE Research Online Documents on Economics","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Robust maximization of asymptotic growth\",\"authors\":\"C. Kardaras, Scott Robertson\",\"doi\":\"10.1214/11-AAP802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the question of how to invest in a robust growth-optimal way in a market where the instantaneous expected return of the underlying process is unknown. The optimal investment strategy is identified using a generalized version of the principal eigenfunction for an elliptic second-order differential operator which depends on the covariance structure of the underlying process used for investing. The robust growth-optimal strategy can also be seen as a limit, as the terminal date goes to infinity, of optimal arbitrages in the terminology of Fernholz and Karatzas.\",\"PeriodicalId\":359449,\"journal\":{\"name\":\"LSE Research Online Documents on Economics\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LSE Research Online Documents on Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/11-AAP802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LSE Research Online Documents on Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/11-AAP802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文讨论了如何在一个潜在过程的瞬时预期回报未知的市场中以稳健的增长最佳方式进行投资的问题。利用椭圆二阶微分算子的广义主特征函数来确定最优投资策略,该算子依赖于投资过程的协方差结构。稳健的增长最优策略也可以被看作是最优套利(用Fernholz和Karatzas的术语来说)的极限,因为终止日期趋于无穷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust maximization of asymptotic growth
This paper addresses the question of how to invest in a robust growth-optimal way in a market where the instantaneous expected return of the underlying process is unknown. The optimal investment strategy is identified using a generalized version of the principal eigenfunction for an elliptic second-order differential operator which depends on the covariance structure of the underlying process used for investing. The robust growth-optimal strategy can also be seen as a limit, as the terminal date goes to infinity, of optimal arbitrages in the terminology of Fernholz and Karatzas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信