基于fpga存储控制器系统的NAND闪存寿命预测方案

Zhuo Chen, Yuqian Pan, Mingyang Gong, Haichun Zhang, Mingyu Zhang, Zhenglin Liu
{"title":"基于fpga存储控制器系统的NAND闪存寿命预测方案","authors":"Zhuo Chen, Yuqian Pan, Mingyang Gong, Haichun Zhang, Mingyu Zhang, Zhenglin Liu","doi":"10.1109/SOCC46988.2019.1570552892","DOIUrl":null,"url":null,"abstract":"The endurance of NAND flash memory continues to decrease with process scaling, leading to a decline in the reliability of the storage system and a rise on risk of data corruption. To enhance the reliability of the storage system, we utilize a neural network model with high accuracy and full application, to predict how far each block of a NAND flash can be cycled before the uncorrectable data errors occur. The input to the model includes program-time, erase-time and raw bit error (RBE) measured by FPGA (Field-Programmable Gate Array) and its output is a specific numerical value of endurance. Based on this prediction model, we propose a FPGA-based scheme for real-time endurance prediction with an accuracy of over 90%.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A NAND Flash Endurance Prediction Scheme with FPGA-based Memory Controller System\",\"authors\":\"Zhuo Chen, Yuqian Pan, Mingyang Gong, Haichun Zhang, Mingyu Zhang, Zhenglin Liu\",\"doi\":\"10.1109/SOCC46988.2019.1570552892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endurance of NAND flash memory continues to decrease with process scaling, leading to a decline in the reliability of the storage system and a rise on risk of data corruption. To enhance the reliability of the storage system, we utilize a neural network model with high accuracy and full application, to predict how far each block of a NAND flash can be cycled before the uncorrectable data errors occur. The input to the model includes program-time, erase-time and raw bit error (RBE) measured by FPGA (Field-Programmable Gate Array) and its output is a specific numerical value of endurance. Based on this prediction model, we propose a FPGA-based scheme for real-time endurance prediction with an accuracy of over 90%.\",\"PeriodicalId\":253998,\"journal\":{\"name\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC46988.2019.1570552892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570552892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着进程的扩展,NAND闪存的使用寿命会不断降低,从而导致存储系统的可靠性下降,数据损坏的风险也会增加。为了提高存储系统的可靠性,我们利用高精度和全面应用的神经网络模型来预测NAND闪存的每个块在发生不可纠正的数据错误之前可以循环多远。该模型的输入包括编程时间、擦除时间和由FPGA(现场可编程门阵列)测量的原始比特误差(RBE),其输出是一个特定的耐久性数值。基于该预测模型,我们提出了一种基于fpga的实时寿命预测方案,预测精度超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NAND Flash Endurance Prediction Scheme with FPGA-based Memory Controller System
The endurance of NAND flash memory continues to decrease with process scaling, leading to a decline in the reliability of the storage system and a rise on risk of data corruption. To enhance the reliability of the storage system, we utilize a neural network model with high accuracy and full application, to predict how far each block of a NAND flash can be cycled before the uncorrectable data errors occur. The input to the model includes program-time, erase-time and raw bit error (RBE) measured by FPGA (Field-Programmable Gate Array) and its output is a specific numerical value of endurance. Based on this prediction model, we propose a FPGA-based scheme for real-time endurance prediction with an accuracy of over 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信