大杂波条件下多机动目标的有效平滑

S. Memon, W. Lee, T. Song
{"title":"大杂波条件下多机动目标的有效平滑","authors":"S. Memon, W. Lee, T. Song","doi":"10.1109/ICCAIS.2016.7822469","DOIUrl":null,"url":null,"abstract":"This paper extends the smoothing algorithm based on integrated probabilistic data association to track multiple maneuvering targets by applying smoothing to joint integrated probabilistic data association (JIPDA). The proposed algorithm utilizes smoothing data association to obtain smoothing prediction which is needed to calculate the smoothing data association probabilities, the smoothing target trajectory state estimates and the smoothing target existence probability. The smoothing data association probabilities are used to update and propagate the forward tracks for tracking multiple maneuvering targets in clutter. This algorithm is called fixed-interval smoothing JIPDA (JIPDAS). Simulation is carried out to show improved false track discrimination performance over the existing algorithms for tracking multiple maneuvering targets in a heavy cluttered environment.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient smoothing for multiple maneuvering targets in heavy clutter\",\"authors\":\"S. Memon, W. Lee, T. Song\",\"doi\":\"10.1109/ICCAIS.2016.7822469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the smoothing algorithm based on integrated probabilistic data association to track multiple maneuvering targets by applying smoothing to joint integrated probabilistic data association (JIPDA). The proposed algorithm utilizes smoothing data association to obtain smoothing prediction which is needed to calculate the smoothing data association probabilities, the smoothing target trajectory state estimates and the smoothing target existence probability. The smoothing data association probabilities are used to update and propagate the forward tracks for tracking multiple maneuvering targets in clutter. This algorithm is called fixed-interval smoothing JIPDA (JIPDAS). Simulation is carried out to show improved false track discrimination performance over the existing algorithms for tracking multiple maneuvering targets in a heavy cluttered environment.\",\"PeriodicalId\":407031,\"journal\":{\"name\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2016.7822469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将基于集成概率数据关联的平滑算法应用于联合集成概率数据关联(JIPDA),将基于集成概率数据关联的平滑算法扩展到多机动目标跟踪。该算法利用平滑数据关联获得平滑预测,计算平滑数据关联概率、平滑目标轨迹状态估计和平滑目标存在概率。利用平滑数据关联概率对前向航迹进行更新和传播,实现对杂波条件下多机动目标的跟踪。该算法称为固定间隔平滑JIPDAS (fixed-interval smoothing JIPDAS)。仿真结果表明,该算法对重干扰环境下的多机动目标跟踪具有更好的误迹判别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient smoothing for multiple maneuvering targets in heavy clutter
This paper extends the smoothing algorithm based on integrated probabilistic data association to track multiple maneuvering targets by applying smoothing to joint integrated probabilistic data association (JIPDA). The proposed algorithm utilizes smoothing data association to obtain smoothing prediction which is needed to calculate the smoothing data association probabilities, the smoothing target trajectory state estimates and the smoothing target existence probability. The smoothing data association probabilities are used to update and propagate the forward tracks for tracking multiple maneuvering targets in clutter. This algorithm is called fixed-interval smoothing JIPDA (JIPDAS). Simulation is carried out to show improved false track discrimination performance over the existing algorithms for tracking multiple maneuvering targets in a heavy cluttered environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信