Yu Huang, M. Kassab, J. Jahangiri, J. Rajski, Wu-Tung Cheng, Dongkwan Han, Jihye Kim, K. Chung
{"title":"SoC设计中EDT通道共享的测试压缩改进","authors":"Yu Huang, M. Kassab, J. Jahangiri, J. Rajski, Wu-Tung Cheng, Dongkwan Han, Jihye Kim, K. Chung","doi":"10.1109/NATW.2014.14","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative test compression technology for system-on-chip (SoC) designs to share scan input channels across multiple cores which use EDT [1] compression. A new DFT compression architecture is proposed to separate control and data channels such that the control channels can be individually accessible, whereas data channels can be shared among a group of cores. The paper illustrates the benefits of the proposed technology in both the enhancement of compression ratios and the flexibility of test compression planning in a core-based SoC design flow. Experimental results with a few large industrial SoCs demonstrate that using the proposed technology the compression can be improved up to 1.87X.","PeriodicalId":283155,"journal":{"name":"2014 IEEE 23rd North Atlantic Test Workshop","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Test Compression Improvement with EDT Channel Sharing in SoC Designs\",\"authors\":\"Yu Huang, M. Kassab, J. Jahangiri, J. Rajski, Wu-Tung Cheng, Dongkwan Han, Jihye Kim, K. Chung\",\"doi\":\"10.1109/NATW.2014.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an innovative test compression technology for system-on-chip (SoC) designs to share scan input channels across multiple cores which use EDT [1] compression. A new DFT compression architecture is proposed to separate control and data channels such that the control channels can be individually accessible, whereas data channels can be shared among a group of cores. The paper illustrates the benefits of the proposed technology in both the enhancement of compression ratios and the flexibility of test compression planning in a core-based SoC design flow. Experimental results with a few large industrial SoCs demonstrate that using the proposed technology the compression can be improved up to 1.87X.\",\"PeriodicalId\":283155,\"journal\":{\"name\":\"2014 IEEE 23rd North Atlantic Test Workshop\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 23rd North Atlantic Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NATW.2014.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 23rd North Atlantic Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATW.2014.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test Compression Improvement with EDT Channel Sharing in SoC Designs
This paper proposes an innovative test compression technology for system-on-chip (SoC) designs to share scan input channels across multiple cores which use EDT [1] compression. A new DFT compression architecture is proposed to separate control and data channels such that the control channels can be individually accessible, whereas data channels can be shared among a group of cores. The paper illustrates the benefits of the proposed technology in both the enhancement of compression ratios and the flexibility of test compression planning in a core-based SoC design flow. Experimental results with a few large industrial SoCs demonstrate that using the proposed technology the compression can be improved up to 1.87X.