基于指纹识别的室内定位无线局域网统计估计分析

D. Năstac, Florentin Alexandru Iftimie, O. Arsene, Costei Cherciu
{"title":"基于指纹识别的室内定位无线局域网统计估计分析","authors":"D. Năstac, Florentin Alexandru Iftimie, O. Arsene, Costei Cherciu","doi":"10.1109/SIITME.2017.8259898","DOIUrl":null,"url":null,"abstract":"The indoor positioning is a new topic in today's navigation and positioning research fields, which presents quite various challenging issues. A statistical approach to treat Wireless Local Area Network (WLAN) based fingerprinting using Received Signal Strengths (RSS) is described here. This study structures this approach as a time-series of the RSS and position data. Kalman filter is applied in order to improve the position prediction based on the measured RSS signal.","PeriodicalId":138347,"journal":{"name":"2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME)","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A statistical estimation analysis of indoor positioning WLAN based fingerprinting\",\"authors\":\"D. Năstac, Florentin Alexandru Iftimie, O. Arsene, Costei Cherciu\",\"doi\":\"10.1109/SIITME.2017.8259898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indoor positioning is a new topic in today's navigation and positioning research fields, which presents quite various challenging issues. A statistical approach to treat Wireless Local Area Network (WLAN) based fingerprinting using Received Signal Strengths (RSS) is described here. This study structures this approach as a time-series of the RSS and position data. Kalman filter is applied in order to improve the position prediction based on the measured RSS signal.\",\"PeriodicalId\":138347,\"journal\":{\"name\":\"2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME)\",\"volume\":\"391 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIITME.2017.8259898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIITME.2017.8259898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

室内定位是当今导航定位研究领域的一个新课题,提出了许多具有挑战性的问题。本文描述了一种使用接收信号强度(RSS)处理基于无线局域网(WLAN)指纹的统计方法。本研究将此方法构建为RSS和位置数据的时间序列。为了改进基于实测RSS信号的位置预测,采用了卡尔曼滤波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical estimation analysis of indoor positioning WLAN based fingerprinting
The indoor positioning is a new topic in today's navigation and positioning research fields, which presents quite various challenging issues. A statistical approach to treat Wireless Local Area Network (WLAN) based fingerprinting using Received Signal Strengths (RSS) is described here. This study structures this approach as a time-series of the RSS and position data. Kalman filter is applied in order to improve the position prediction based on the measured RSS signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信