在处理生物特征数据时,卡方皮尔逊函数网络和贝叶斯双曲函数网络的网络功率的可比估计

A. I. Ivanov, S. E. Vyatchanin, P. Lozhnikov
{"title":"在处理生物特征数据时,卡方皮尔逊函数网络和贝叶斯双曲函数网络的网络功率的可比估计","authors":"A. I. Ivanov, S. E. Vyatchanin, P. Lozhnikov","doi":"10.1109/SIBCON.2017.7998435","DOIUrl":null,"url":null,"abstract":"This paper aims at the comparison of the network power for Pearson-Hamming networks built using the chi-squared functional set, and Bayes-Hamming networks built using the hyperbolic functional set. To configure these networks a correlation matrix of biometric data is calculated. At the nest step the data are sorted. Low-correlated data are converted with Pearson-Hamming networks, high-correlated data are converted using Bayes-Hamming networks. The detection of a pair with high-correlated parameters r ≈ 0.99 is equal to the detection of approximately 9 pairs of low-correlated parameters r ≈ 0. The power gain for Pearson-Hamming and Bayes-Hamming networks are comparable. Low-correlated parameters dominate but they are less significant than high-correlated parameters.","PeriodicalId":190182,"journal":{"name":"2017 International Siberian Conference on Control and Communications (SIBCON)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparable estimation of network power for chi-squared Pearson functional networks and Bayes hyperbolic functional networks while processing biometric data\",\"authors\":\"A. I. Ivanov, S. E. Vyatchanin, P. Lozhnikov\",\"doi\":\"10.1109/SIBCON.2017.7998435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at the comparison of the network power for Pearson-Hamming networks built using the chi-squared functional set, and Bayes-Hamming networks built using the hyperbolic functional set. To configure these networks a correlation matrix of biometric data is calculated. At the nest step the data are sorted. Low-correlated data are converted with Pearson-Hamming networks, high-correlated data are converted using Bayes-Hamming networks. The detection of a pair with high-correlated parameters r ≈ 0.99 is equal to the detection of approximately 9 pairs of low-correlated parameters r ≈ 0. The power gain for Pearson-Hamming and Bayes-Hamming networks are comparable. Low-correlated parameters dominate but they are less significant than high-correlated parameters.\",\"PeriodicalId\":190182,\"journal\":{\"name\":\"2017 International Siberian Conference on Control and Communications (SIBCON)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Siberian Conference on Control and Communications (SIBCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON.2017.7998435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2017.7998435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文旨在比较使用卡方函数集构建的Pearson-Hamming网络和使用双曲函数集构建的Bayes-Hamming网络的网络功率。为了配置这些网络,计算生物特征数据的相关矩阵。在下一步骤中,对数据进行排序。低相关数据用Pearson-Hamming网络进行转换,高相关数据用Bayes-Hamming网络进行转换。检测到一对高相关参数r≈0.99等于检测到大约9对低相关参数r≈0。皮尔逊-汉明网络和贝叶斯-汉明网络的权力增益是相当的。低相关参数占主导地位,但它们不如高相关参数显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparable estimation of network power for chi-squared Pearson functional networks and Bayes hyperbolic functional networks while processing biometric data
This paper aims at the comparison of the network power for Pearson-Hamming networks built using the chi-squared functional set, and Bayes-Hamming networks built using the hyperbolic functional set. To configure these networks a correlation matrix of biometric data is calculated. At the nest step the data are sorted. Low-correlated data are converted with Pearson-Hamming networks, high-correlated data are converted using Bayes-Hamming networks. The detection of a pair with high-correlated parameters r ≈ 0.99 is equal to the detection of approximately 9 pairs of low-correlated parameters r ≈ 0. The power gain for Pearson-Hamming and Bayes-Hamming networks are comparable. Low-correlated parameters dominate but they are less significant than high-correlated parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信