{"title":"3月SS:测试所有静态简单的RAM故障","authors":"S. Hamdioui, A. V. Goor, M. Rodgers","doi":"10.1109/MTDT.2002.1029769","DOIUrl":null,"url":null,"abstract":"This paper presents all simple (i.e., not linked) static fault models that have been shown to exist for random access memories (RAMs), and shows that none of the current industrial march tests has the capability to detect all these faults. It therefore introduces a new test (March SS), with a test length of 22n, that detects all realistic simple static faults in RAMs.","PeriodicalId":230758,"journal":{"name":"Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"March SS: a test for all static simple RAM faults\",\"authors\":\"S. Hamdioui, A. V. Goor, M. Rodgers\",\"doi\":\"10.1109/MTDT.2002.1029769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents all simple (i.e., not linked) static fault models that have been shown to exist for random access memories (RAMs), and shows that none of the current industrial march tests has the capability to detect all these faults. It therefore introduces a new test (March SS), with a test length of 22n, that detects all realistic simple static faults in RAMs.\",\"PeriodicalId\":230758,\"journal\":{\"name\":\"Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MTDT.2002.1029769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTDT.2002.1029769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents all simple (i.e., not linked) static fault models that have been shown to exist for random access memories (RAMs), and shows that none of the current industrial march tests has the capability to detect all these faults. It therefore introduces a new test (March SS), with a test length of 22n, that detects all realistic simple static faults in RAMs.