Xiangrong Zhang, Xiaoxue Qian, L. Jiao, Gaimei Wang
{"title":"一种免疫谱聚类算法","authors":"Xiangrong Zhang, Xiaoxue Qian, L. Jiao, Gaimei Wang","doi":"10.1109/ISPACS.2007.4445882","DOIUrl":null,"url":null,"abstract":"A new clustering approach namely immune spectral clustering algorithm (ISCA) is proposed in this paper. It combines spectral clustering with immune algorithm for data clustering. In this algorithm, making use of the dimension reduction ability of the spectral clustering algorithm, an immune clonal clustering algorithm is used to cluster the data points in the mapping space. Because we can get tight clusters after mapping with the spectral clustering, and the immune clonal clustering algorithm characterized by rapid convergence to global optimum and minimal sensitivity to initialization, we can get a better data clustering. Experimental results over four data sets from UCI database show the efficiency of our algorithm.","PeriodicalId":220276,"journal":{"name":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An immune spectral clustering algorithm\",\"authors\":\"Xiangrong Zhang, Xiaoxue Qian, L. Jiao, Gaimei Wang\",\"doi\":\"10.1109/ISPACS.2007.4445882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new clustering approach namely immune spectral clustering algorithm (ISCA) is proposed in this paper. It combines spectral clustering with immune algorithm for data clustering. In this algorithm, making use of the dimension reduction ability of the spectral clustering algorithm, an immune clonal clustering algorithm is used to cluster the data points in the mapping space. Because we can get tight clusters after mapping with the spectral clustering, and the immune clonal clustering algorithm characterized by rapid convergence to global optimum and minimal sensitivity to initialization, we can get a better data clustering. Experimental results over four data sets from UCI database show the efficiency of our algorithm.\",\"PeriodicalId\":220276,\"journal\":{\"name\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Intelligent Signal Processing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2007.4445882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Intelligent Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2007.4445882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new clustering approach namely immune spectral clustering algorithm (ISCA) is proposed in this paper. It combines spectral clustering with immune algorithm for data clustering. In this algorithm, making use of the dimension reduction ability of the spectral clustering algorithm, an immune clonal clustering algorithm is used to cluster the data points in the mapping space. Because we can get tight clusters after mapping with the spectral clustering, and the immune clonal clustering algorithm characterized by rapid convergence to global optimum and minimal sensitivity to initialization, we can get a better data clustering. Experimental results over four data sets from UCI database show the efficiency of our algorithm.