{"title":"为什么需要综合产量管理","authors":"Y. Lepejian","doi":"10.1109/ISQED.2002.10021","DOIUrl":null,"url":null,"abstract":"Improving semiconductor yield is a multi-facetted process that must include design, manufacturing, and test. An integrated approach enables companies to rapidly reach higher levels of revenue and profitability. Incorporating design-for-yield concepts early, improving the quality of the test programs, and applying new technology to accelerate the measurement and correction of failure sources in the production process combine to have powerful effect upon company profits, product quality, and time to volume.","PeriodicalId":302936,"journal":{"name":"IEEE International Symposium on Quality Electronic Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why Integrated Yield Management is a Necessity\",\"authors\":\"Y. Lepejian\",\"doi\":\"10.1109/ISQED.2002.10021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving semiconductor yield is a multi-facetted process that must include design, manufacturing, and test. An integrated approach enables companies to rapidly reach higher levels of revenue and profitability. Incorporating design-for-yield concepts early, improving the quality of the test programs, and applying new technology to accelerate the measurement and correction of failure sources in the production process combine to have powerful effect upon company profits, product quality, and time to volume.\",\"PeriodicalId\":302936,\"journal\":{\"name\":\"IEEE International Symposium on Quality Electronic Design\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2002.10021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2002.10021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving semiconductor yield is a multi-facetted process that must include design, manufacturing, and test. An integrated approach enables companies to rapidly reach higher levels of revenue and profitability. Incorporating design-for-yield concepts early, improving the quality of the test programs, and applying new technology to accelerate the measurement and correction of failure sources in the production process combine to have powerful effect upon company profits, product quality, and time to volume.