使用虹膜和主指节的多模态生物识别验证

Abderrahmane Herbadji, N. Guermat, Lahcene Ziet, Mohamed Cheniti
{"title":"使用虹膜和主指节的多模态生物识别验证","authors":"Abderrahmane Herbadji, N. Guermat, Lahcene Ziet, Mohamed Cheniti","doi":"10.1109/ICAEE47123.2019.9014704","DOIUrl":null,"url":null,"abstract":"The drawbacks of unimodal biometric systems such as non-universality, noisy sensor data and spoofing can be mitigated using multiple biometric traits. In this study, a novel multibiometric system to authenticate users based on their major knuckle finger patterns using four fingers (i.e., little, ring, middle, and index) and iris is proposed. A local texture descriptor namely binarized statistical image features (BSIF) has been employed to extract the features for each of the biometric traits considered in order to improve biometric-based personal verification. The comparison results on PolyU contactless hand dorsal images database and IIT Delhi-1 iris database indicate that the proposed multibiometric authentication with grouping function based score fusion outperforms the existing transformation-based fusion approaches in literature (e.g., t-norms, symmetric-sum), attaining a correct recognition rate of 95.54%.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multimodal Biometric Verification using the Iris and Major Finger Knuckles\",\"authors\":\"Abderrahmane Herbadji, N. Guermat, Lahcene Ziet, Mohamed Cheniti\",\"doi\":\"10.1109/ICAEE47123.2019.9014704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drawbacks of unimodal biometric systems such as non-universality, noisy sensor data and spoofing can be mitigated using multiple biometric traits. In this study, a novel multibiometric system to authenticate users based on their major knuckle finger patterns using four fingers (i.e., little, ring, middle, and index) and iris is proposed. A local texture descriptor namely binarized statistical image features (BSIF) has been employed to extract the features for each of the biometric traits considered in order to improve biometric-based personal verification. The comparison results on PolyU contactless hand dorsal images database and IIT Delhi-1 iris database indicate that the proposed multibiometric authentication with grouping function based score fusion outperforms the existing transformation-based fusion approaches in literature (e.g., t-norms, symmetric-sum), attaining a correct recognition rate of 95.54%.\",\"PeriodicalId\":197612,\"journal\":{\"name\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE47123.2019.9014704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9014704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

单峰生物识别系统的缺点,如非通用性,噪声传感器数据和欺骗可以减轻使用多个生物特征。在这项研究中,提出了一种新的多生物识别系统,基于用户的主要指关节模式,使用四指(即小指、无名指、中指和食指)和虹膜进行身份验证。采用局部纹理描述符二值化统计图像特征(BSIF)来提取每个生物特征的特征,以改进基于生物特征的个人验证。在PolyU非接触式手背图像数据库和IIT Delhi-1虹膜数据库上的对比结果表明,基于分组函数的分数融合多生物特征认证优于文献中现有的基于变换的融合方法(如t-规范、对称求和),正确率达到95.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Biometric Verification using the Iris and Major Finger Knuckles
The drawbacks of unimodal biometric systems such as non-universality, noisy sensor data and spoofing can be mitigated using multiple biometric traits. In this study, a novel multibiometric system to authenticate users based on their major knuckle finger patterns using four fingers (i.e., little, ring, middle, and index) and iris is proposed. A local texture descriptor namely binarized statistical image features (BSIF) has been employed to extract the features for each of the biometric traits considered in order to improve biometric-based personal verification. The comparison results on PolyU contactless hand dorsal images database and IIT Delhi-1 iris database indicate that the proposed multibiometric authentication with grouping function based score fusion outperforms the existing transformation-based fusion approaches in literature (e.g., t-norms, symmetric-sum), attaining a correct recognition rate of 95.54%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信