二进制定斜线和浮点斜线数系统的可行性分析

D. Matula, Peter Kornerup
{"title":"二进制定斜线和浮点斜线数系统的可行性分析","authors":"D. Matula, Peter Kornerup","doi":"10.1109/ARITH.1978.6155752","DOIUrl":null,"url":null,"abstract":"Design and analysis of finite precision rational number systems based on fixed-slash and floating-slash representation is pursued. Natural formats for binary fixed-slash and binary floating-slash number representation in computer words are described. Compatibility with standard integer representation is obtained. Redundancy in the' representation is shown to be minimal. Arithmetic register requirements are considered. Worst case and average case rounding errors are determined, and the concept of adaptive variable precision in the rounding is developed.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A feasibility analysis of binary fixed-slash and floating-slash number systems\",\"authors\":\"D. Matula, Peter Kornerup\",\"doi\":\"10.1109/ARITH.1978.6155752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design and analysis of finite precision rational number systems based on fixed-slash and floating-slash representation is pursued. Natural formats for binary fixed-slash and binary floating-slash number representation in computer words are described. Compatibility with standard integer representation is obtained. Redundancy in the' representation is shown to be minimal. Arithmetic register requirements are considered. Worst case and average case rounding errors are determined, and the concept of adaptive variable precision in the rounding is developed.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对基于定斜线和浮点斜线表示的有限精度有理数系统进行了设计和分析。描述了计算机词中二进制固定斜杠和二进制浮点斜杠数字表示的自然格式。获得了与标准整数表示的兼容性。表示中的冗余被证明是最小的。考虑了算术寄存器的要求。确定了最坏情况和平均情况舍入误差,提出了自适应变精度舍入的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feasibility analysis of binary fixed-slash and floating-slash number systems
Design and analysis of finite precision rational number systems based on fixed-slash and floating-slash representation is pursued. Natural formats for binary fixed-slash and binary floating-slash number representation in computer words are described. Compatibility with standard integer representation is obtained. Redundancy in the' representation is shown to be minimal. Arithmetic register requirements are considered. Worst case and average case rounding errors are determined, and the concept of adaptive variable precision in the rounding is developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信