闭弦和开弦振幅的组成部分

P. Vanhove, Federico Zerbini
{"title":"闭弦和开弦振幅的组成部分","authors":"P. Vanhove, Federico Zerbini","doi":"10.22323/1.383.0022","DOIUrl":null,"url":null,"abstract":"In this text we review various relations between building blocks of closed and open string amplitudes at tree-level and genus one. We explain that KLT relations between tree-level closed and open string amplitudes follow from the holomorphic factorisation of conformal correlation functions on conformal blocks. We give a simple hands-on evaluation of the $\\alpha'$-expansion of tree-level closed string amplitudes displaying the special single-valued nature of the coefficients. We show that the same techniques can be used also at genus-one, where we give a new proof of the single-valued nature of the coefficients of 2-point closed string amplitudes. We conclude by giving an overview of some open problems.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Building blocks of closed and open string amplitudes\",\"authors\":\"P. Vanhove, Federico Zerbini\",\"doi\":\"10.22323/1.383.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this text we review various relations between building blocks of closed and open string amplitudes at tree-level and genus one. We explain that KLT relations between tree-level closed and open string amplitudes follow from the holomorphic factorisation of conformal correlation functions on conformal blocks. We give a simple hands-on evaluation of the $\\\\alpha'$-expansion of tree-level closed string amplitudes displaying the special single-valued nature of the coefficients. We show that the same techniques can be used also at genus-one, where we give a new proof of the single-valued nature of the coefficients of 2-point closed string amplitudes. We conclude by giving an overview of some open problems.\",\"PeriodicalId\":173323,\"journal\":{\"name\":\"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.383.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.383.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们回顾了树级和属1上闭弦和开弦振幅组成单元之间的各种关系。我们从共形块上共形相关函数的全纯分解出发,解释了树级闭弦和开弦振幅之间的KLT关系。我们给出了树级闭弦振幅的$\alpha'$展开的一个简单的实际评估,显示了系数的特殊单值性质。我们证明了同样的技术也可以用于第一类,在那里我们给出了2点闭弦振幅系数的单值性质的新证明。最后,我们概述了一些尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building blocks of closed and open string amplitudes
In this text we review various relations between building blocks of closed and open string amplitudes at tree-level and genus one. We explain that KLT relations between tree-level closed and open string amplitudes follow from the holomorphic factorisation of conformal correlation functions on conformal blocks. We give a simple hands-on evaluation of the $\alpha'$-expansion of tree-level closed string amplitudes displaying the special single-valued nature of the coefficients. We show that the same techniques can be used also at genus-one, where we give a new proof of the single-valued nature of the coefficients of 2-point closed string amplitudes. We conclude by giving an overview of some open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信