用线性回归预测温度

Sindhu P. Menon, Ramith Bharadwaj, Pooja Shetty, P. Sanu, S. Nagendra
{"title":"用线性回归预测温度","authors":"Sindhu P. Menon, Ramith Bharadwaj, Pooja Shetty, P. Sanu, S. Nagendra","doi":"10.1109/ICEECCOT.2017.8284588","DOIUrl":null,"url":null,"abstract":"An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities. The project aims to showcase the effect of UHI using temperature as the independent variable with pollution and population as the dependent factor variables. Using the Time Series analysis we obtained the trend in temperature, population and pollution. Using Multiple Linear Regression we have predicted the temperature based on the factors. The accuracy of the predicted values is depicted by comparing the predicted and measured values of the years 2013–2016. Hence proving that the predicted value is accurate and measures must be taken to prevent this or the temperature will increase to an unlivable extent.","PeriodicalId":439156,"journal":{"name":"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Prediction of temperature using linear regression\",\"authors\":\"Sindhu P. Menon, Ramith Bharadwaj, Pooja Shetty, P. Sanu, S. Nagendra\",\"doi\":\"10.1109/ICEECCOT.2017.8284588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities. The project aims to showcase the effect of UHI using temperature as the independent variable with pollution and population as the dependent factor variables. Using the Time Series analysis we obtained the trend in temperature, population and pollution. Using Multiple Linear Regression we have predicted the temperature based on the factors. The accuracy of the predicted values is depicted by comparing the predicted and measured values of the years 2013–2016. Hence proving that the predicted value is accurate and measures must be taken to prevent this or the temperature will increase to an unlivable extent.\",\"PeriodicalId\":439156,\"journal\":{\"name\":\"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEECCOT.2017.8284588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEECCOT.2017.8284588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

城市热岛(UHI)是指由于人类活动,城市地区或大都市地区比周围的农村地区明显温暖。该项目旨在以温度为自变量,以污染和人口为因变量,展示城市热岛的效果。通过时间序列分析,得到了气温、人口和污染的变化趋势。利用多元线性回归对各因素进行了温度预测。通过比较2013-2016年的预测值和实测值来描述预测值的准确性。因此,证明预测值是准确的,必须采取措施防止这种情况发生,否则温度将上升到无法居住的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of temperature using linear regression
An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas due to human activities. The project aims to showcase the effect of UHI using temperature as the independent variable with pollution and population as the dependent factor variables. Using the Time Series analysis we obtained the trend in temperature, population and pollution. Using Multiple Linear Regression we have predicted the temperature based on the factors. The accuracy of the predicted values is depicted by comparing the predicted and measured values of the years 2013–2016. Hence proving that the predicted value is accurate and measures must be taken to prevent this or the temperature will increase to an unlivable extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信