设施系统能量流预测的神经网络

L. Frosini, G. Petrecca
{"title":"设施系统能量流预测的神经网络","authors":"L. Frosini, G. Petrecca","doi":"10.1109/SMCIA.1999.782713","DOIUrl":null,"url":null,"abstract":"A procedure for the short-term prediction of the thermal energy consumption of a hospital is shown in this paper. First, linear ARX models are built in order to obtain information on the influence of the input variables on the output of the system. Therefore, nonlinear models based on feedforward neural networks (NNARX) are built using the information provided by the linear estimate. The results obtained from the ARX and NNARX models are compared, concluding that NNARX models provide better results than ARX models, but the analysis of ARX models is necessary to obtain guidelines in the choice of the best regression vector as input for the neural models.","PeriodicalId":222278,"journal":{"name":"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neural networks for energy flows prediction in facility systems\",\"authors\":\"L. Frosini, G. Petrecca\",\"doi\":\"10.1109/SMCIA.1999.782713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A procedure for the short-term prediction of the thermal energy consumption of a hospital is shown in this paper. First, linear ARX models are built in order to obtain information on the influence of the input variables on the output of the system. Therefore, nonlinear models based on feedforward neural networks (NNARX) are built using the information provided by the linear estimate. The results obtained from the ARX and NNARX models are compared, concluding that NNARX models provide better results than ARX models, but the analysis of ARX models is necessary to obtain guidelines in the choice of the best regression vector as input for the neural models.\",\"PeriodicalId\":222278,\"journal\":{\"name\":\"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.1999.782713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.1999.782713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文给出了一种医院热能消耗短期预测的方法。首先,建立线性ARX模型,以获取输入变量对系统输出的影响信息。因此,利用线性估计提供的信息,建立了基于前馈神经网络(NNARX)的非线性模型。对比了ARX和NNARX模型得到的结果,认为NNARX模型比ARX模型提供了更好的结果,但ARX模型的分析是必要的,以获得选择最佳回归向量作为神经模型输入的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks for energy flows prediction in facility systems
A procedure for the short-term prediction of the thermal energy consumption of a hospital is shown in this paper. First, linear ARX models are built in order to obtain information on the influence of the input variables on the output of the system. Therefore, nonlinear models based on feedforward neural networks (NNARX) are built using the information provided by the linear estimate. The results obtained from the ARX and NNARX models are compared, concluding that NNARX models provide better results than ARX models, but the analysis of ARX models is necessary to obtain guidelines in the choice of the best regression vector as input for the neural models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信