基于单层和双层石墨烯的双栅场效应晶体管的量子漂移-扩散模型

I. I. Abramov, V. Labunov, Natallia V. Kalameitsava, I. A. Romanova, I. Y. Shcherbakova
{"title":"基于单层和双层石墨烯的双栅场效应晶体管的量子漂移-扩散模型","authors":"I. I. Abramov, V. Labunov, Natallia V. Kalameitsava, I. A. Romanova, I. Y. Shcherbakova","doi":"10.1117/12.2622451","DOIUrl":null,"url":null,"abstract":"At present, a great deal of interest is observed in devices based on two-dimentional (2D) materials, especially graphene, in the field of micro- and nanoelectronics. Graphene has robust hoheycomb lattice structure and unique properties such as ambipolarity, high carrier mobility, high conductivity. Nevertheless the properties of mono- and bilayer graphene are different. A significant difference in electrical characteristics of field-effect transistors (FETs) based on mono- and bilayer graphene was shown in few experimental works [1-3]. Note, that FET on bilayer graphene has demonstrated improved characteristics in comparison to FET on monolayer graphene [1,4,5]. Therefore a necessity to create models specifically for FETs on bilayer graphene appears. A tunable band gap is observed in the FET, when a perpendicular electrical field is applied to the bilayer graphene channel [6]. In the paper a quantum drift-diffusion model of FETs based on bilayer graphene is proposed. The model is a combination of electrical and physical models [7]. The mechanism of carrier transport along the bilayer graphene channel is considered. The electrostatic potential of the transistor channel is defined according to the band gap. Simulation of graphene dual-gate FET with channel length 4 µm is performed using the proposed model. Calculation of electrostatic potential of the investigated device structure was carried out. A good agreement with experimental data has been obtained for output characteristics of FETs based on monolayer graphene [8] using the developed model for this case. Different design parameters of FETs such as channel length, channel width, thickness of top- and back-gate dielectrics are used in the models. The proposed models of different FETs were included in the nanoelectronic devices simulation system NANODEV [9] developed at the BSUIR since 1995.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"204 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum drift-diffusion models for dual-gate field-effect transistors based on mono- and bilayer graphene\",\"authors\":\"I. I. Abramov, V. Labunov, Natallia V. Kalameitsava, I. A. Romanova, I. Y. Shcherbakova\",\"doi\":\"10.1117/12.2622451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, a great deal of interest is observed in devices based on two-dimentional (2D) materials, especially graphene, in the field of micro- and nanoelectronics. Graphene has robust hoheycomb lattice structure and unique properties such as ambipolarity, high carrier mobility, high conductivity. Nevertheless the properties of mono- and bilayer graphene are different. A significant difference in electrical characteristics of field-effect transistors (FETs) based on mono- and bilayer graphene was shown in few experimental works [1-3]. Note, that FET on bilayer graphene has demonstrated improved characteristics in comparison to FET on monolayer graphene [1,4,5]. Therefore a necessity to create models specifically for FETs on bilayer graphene appears. A tunable band gap is observed in the FET, when a perpendicular electrical field is applied to the bilayer graphene channel [6]. In the paper a quantum drift-diffusion model of FETs based on bilayer graphene is proposed. The model is a combination of electrical and physical models [7]. The mechanism of carrier transport along the bilayer graphene channel is considered. The electrostatic potential of the transistor channel is defined according to the band gap. Simulation of graphene dual-gate FET with channel length 4 µm is performed using the proposed model. Calculation of electrostatic potential of the investigated device structure was carried out. A good agreement with experimental data has been obtained for output characteristics of FETs based on monolayer graphene [8] using the developed model for this case. Different design parameters of FETs such as channel length, channel width, thickness of top- and back-gate dielectrics are used in the models. The proposed models of different FETs were included in the nanoelectronic devices simulation system NANODEV [9] developed at the BSUIR since 1995.\",\"PeriodicalId\":388511,\"journal\":{\"name\":\"International Conference on Micro- and Nano-Electronics\",\"volume\":\"204 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Micro- and Nano-Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2622451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2622451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于二维材料,特别是石墨烯的器件在微电子和纳米电子学领域引起了极大的兴趣。石墨烯具有坚固的蜂窝晶格结构和双极性、高载流子迁移率、高导电性等独特性能。然而单层和双层石墨烯的性质是不同的。在一些实验中,单层和双层石墨烯的场效应晶体管(fet)的电特性有显著差异[1-3]。值得注意的是,与单层石墨烯上的场效应管相比,双层石墨烯上的场效应管表现出了更好的特性[1,4,5]。因此,有必要为双层石墨烯上的场效应管创建专门的模型。当垂直电场作用于双层石墨烯通道时,可以在FET中观察到可调谐的带隙[6]。本文提出了基于双层石墨烯的场效应管的量子漂移-扩散模型。该模型是电模型和物理模型的结合[7]。研究了载流子沿双层石墨烯通道的输运机理。晶体管通道的静电势根据带隙来定义。利用该模型对通道长度为4µm的石墨烯双栅场效应管进行了仿真。计算了所研究器件结构的静电势。基于单层石墨烯的场效应管的输出特性与实验数据非常吻合[8]。模型中采用了不同的设计参数,如沟道长度、沟道宽度、顶极和背极介电体厚度等。所提出的不同场效应管的模型被包括在BSUIR自1995年以来开发的纳米电子器件仿真系统NANODEV[9]中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum drift-diffusion models for dual-gate field-effect transistors based on mono- and bilayer graphene
At present, a great deal of interest is observed in devices based on two-dimentional (2D) materials, especially graphene, in the field of micro- and nanoelectronics. Graphene has robust hoheycomb lattice structure and unique properties such as ambipolarity, high carrier mobility, high conductivity. Nevertheless the properties of mono- and bilayer graphene are different. A significant difference in electrical characteristics of field-effect transistors (FETs) based on mono- and bilayer graphene was shown in few experimental works [1-3]. Note, that FET on bilayer graphene has demonstrated improved characteristics in comparison to FET on monolayer graphene [1,4,5]. Therefore a necessity to create models specifically for FETs on bilayer graphene appears. A tunable band gap is observed in the FET, when a perpendicular electrical field is applied to the bilayer graphene channel [6]. In the paper a quantum drift-diffusion model of FETs based on bilayer graphene is proposed. The model is a combination of electrical and physical models [7]. The mechanism of carrier transport along the bilayer graphene channel is considered. The electrostatic potential of the transistor channel is defined according to the band gap. Simulation of graphene dual-gate FET with channel length 4 µm is performed using the proposed model. Calculation of electrostatic potential of the investigated device structure was carried out. A good agreement with experimental data has been obtained for output characteristics of FETs based on monolayer graphene [8] using the developed model for this case. Different design parameters of FETs such as channel length, channel width, thickness of top- and back-gate dielectrics are used in the models. The proposed models of different FETs were included in the nanoelectronic devices simulation system NANODEV [9] developed at the BSUIR since 1995.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信