由雷达给出的主点支持的u/v视差交通环境的三维分割

Michael Teutsch, T. Heger, T. Schamm, Johann Marius Zöllner
{"title":"由雷达给出的主点支持的u/v视差交通环境的三维分割","authors":"Michael Teutsch, T. Heger, T. Schamm, Johann Marius Zöllner","doi":"10.1109/IVS.2010.5548111","DOIUrl":null,"url":null,"abstract":"3D-segmentation of a traffic scene with two-dimensional row- and column-disparity-histograms, namely u/v-disparities, has become more and more popular for modern stereo-camera-based driver assistance systems due to its fast computation in real-time, few memory requirements and robustness against noisy or intermittent data. In this paper, we present a novel approach to support this pure vision-based method by projecting preprocessed radar-signals directly to u-disparity-space. We called the projection result “masterpoints”. This data fusion on low feature-level improved the segmentation process and increased the obstacle detection rate significantly. No assumptions about obstacle-type or -size are needed. Furthermore, the algorithms can be parallelized easily and run in real-time.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D-segmentation of traffic environments with u/v-disparity supported by radar-given masterpoints\",\"authors\":\"Michael Teutsch, T. Heger, T. Schamm, Johann Marius Zöllner\",\"doi\":\"10.1109/IVS.2010.5548111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D-segmentation of a traffic scene with two-dimensional row- and column-disparity-histograms, namely u/v-disparities, has become more and more popular for modern stereo-camera-based driver assistance systems due to its fast computation in real-time, few memory requirements and robustness against noisy or intermittent data. In this paper, we present a novel approach to support this pure vision-based method by projecting preprocessed radar-signals directly to u-disparity-space. We called the projection result “masterpoints”. This data fusion on low feature-level improved the segmentation process and increased the obstacle detection rate significantly. No assumptions about obstacle-type or -size are needed. Furthermore, the algorithms can be parallelized easily and run in real-time.\",\"PeriodicalId\":123266,\"journal\":{\"name\":\"2010 IEEE Intelligent Vehicles Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2010.5548111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5548111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用二维行、列差异直方图(即u/v差异)对交通场景进行三维分割,由于其实时计算速度快、对内存要求低以及对噪声或间歇性数据的鲁棒性,在现代基于立体摄像头的驾驶辅助系统中越来越受欢迎。在本文中,我们提出了一种新的方法,通过将预处理的雷达信号直接投影到u-差分空间来支持这种纯粹基于视觉的方法。我们将投影结果称为“masterpoints”。这种低特征级的数据融合改进了分割过程,显著提高了障碍物检测率。不需要对障碍类型或大小进行假设。此外,该算法易于并行化和实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-segmentation of traffic environments with u/v-disparity supported by radar-given masterpoints
3D-segmentation of a traffic scene with two-dimensional row- and column-disparity-histograms, namely u/v-disparities, has become more and more popular for modern stereo-camera-based driver assistance systems due to its fast computation in real-time, few memory requirements and robustness against noisy or intermittent data. In this paper, we present a novel approach to support this pure vision-based method by projecting preprocessed radar-signals directly to u-disparity-space. We called the projection result “masterpoints”. This data fusion on low feature-level improved the segmentation process and increased the obstacle detection rate significantly. No assumptions about obstacle-type or -size are needed. Furthermore, the algorithms can be parallelized easily and run in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信