{"title":"采用交直流矩阵变换器理论的简化一般直接空间矢量调制方法,实现了单位功率因数控制的三相交直流矩阵整流器","authors":"K. You, D. Xiao, M. F. Rahman, M. Uddin","doi":"10.1109/IAS.2011.6074348","DOIUrl":null,"url":null,"abstract":"This paper presents the application of reduced form of general direct space vector modulation(G-SVM) approach of ac-ac matrix converter theory to three-phase ac-dc matrix rectifier. The reduced form of G-SVM and the derivation of three-phase ac-dc matrix rectifier from three-phase ac-ac matrix converter are described and theoretically justified. A prominent feature of the reduced G-SVM controlled three-phase ac-dc matrix rectifier, in addition to its capability of tight dc-voltage regulation, is the simple and direct control of the input ac current displacement phase angles (displacement power factors). Simulated and experimental verifications for this work have been presented and discussed.","PeriodicalId":268988,"journal":{"name":"2011 IEEE Industry Applications Society Annual Meeting","volume":"10 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Applying reduced general direct space vector modulation approach of AC-AC matrix converter theory to achieve unity power factor controlled three-phase AC-DC matrix rectifier\",\"authors\":\"K. You, D. Xiao, M. F. Rahman, M. Uddin\",\"doi\":\"10.1109/IAS.2011.6074348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of reduced form of general direct space vector modulation(G-SVM) approach of ac-ac matrix converter theory to three-phase ac-dc matrix rectifier. The reduced form of G-SVM and the derivation of three-phase ac-dc matrix rectifier from three-phase ac-ac matrix converter are described and theoretically justified. A prominent feature of the reduced G-SVM controlled three-phase ac-dc matrix rectifier, in addition to its capability of tight dc-voltage regulation, is the simple and direct control of the input ac current displacement phase angles (displacement power factors). Simulated and experimental verifications for this work have been presented and discussed.\",\"PeriodicalId\":268988,\"journal\":{\"name\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"10 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2011.6074348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2011.6074348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying reduced general direct space vector modulation approach of AC-AC matrix converter theory to achieve unity power factor controlled three-phase AC-DC matrix rectifier
This paper presents the application of reduced form of general direct space vector modulation(G-SVM) approach of ac-ac matrix converter theory to three-phase ac-dc matrix rectifier. The reduced form of G-SVM and the derivation of three-phase ac-dc matrix rectifier from three-phase ac-ac matrix converter are described and theoretically justified. A prominent feature of the reduced G-SVM controlled three-phase ac-dc matrix rectifier, in addition to its capability of tight dc-voltage regulation, is the simple and direct control of the input ac current displacement phase angles (displacement power factors). Simulated and experimental verifications for this work have been presented and discussed.