{"title":"VANETs的主动证书验证","authors":"Hongyu Jin, Panos Papadimitratos","doi":"10.1109/VNC.2016.7835974","DOIUrl":null,"url":null,"abstract":"Security and privacy in Vehicular Ad-hoc Networks (VANETs) mandates use of short-lived credentials (pseudonyms) and cryptographic key pairs. This implies significant computational overhead for vehicles, needing to validate often numerous such pseudonyms within a short period. To alleviate such a bottleneck that could even place vehicle safety at risk, we propose a proactive pseudonym validation approach based on Bloom Filters (BFs). We show that our scheme could liberate computational resources for other (safety- and time-critical) operations with reasonable communication overhead without compromising security and privacy.","PeriodicalId":352428,"journal":{"name":"2016 IEEE Vehicular Networking Conference (VNC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Proactive certificate validation for VANETs\",\"authors\":\"Hongyu Jin, Panos Papadimitratos\",\"doi\":\"10.1109/VNC.2016.7835974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security and privacy in Vehicular Ad-hoc Networks (VANETs) mandates use of short-lived credentials (pseudonyms) and cryptographic key pairs. This implies significant computational overhead for vehicles, needing to validate often numerous such pseudonyms within a short period. To alleviate such a bottleneck that could even place vehicle safety at risk, we propose a proactive pseudonym validation approach based on Bloom Filters (BFs). We show that our scheme could liberate computational resources for other (safety- and time-critical) operations with reasonable communication overhead without compromising security and privacy.\",\"PeriodicalId\":352428,\"journal\":{\"name\":\"2016 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC.2016.7835974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2016.7835974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Security and privacy in Vehicular Ad-hoc Networks (VANETs) mandates use of short-lived credentials (pseudonyms) and cryptographic key pairs. This implies significant computational overhead for vehicles, needing to validate often numerous such pseudonyms within a short period. To alleviate such a bottleneck that could even place vehicle safety at risk, we propose a proactive pseudonym validation approach based on Bloom Filters (BFs). We show that our scheme could liberate computational resources for other (safety- and time-critical) operations with reasonable communication overhead without compromising security and privacy.