Yamna El Mouedden, R. Alghamedi, M. Alam, M. Vasiliev, K. Alameh
{"title":"物理气相沉积制备的太阳和热辐射控制用薄膜涂层","authors":"Yamna El Mouedden, R. Alghamedi, M. Alam, M. Vasiliev, K. Alameh","doi":"10.1109/HONET.2012.6421440","DOIUrl":null,"url":null,"abstract":"Growth of multilayer thin film structures containing dielectric and metal layers using physical vapor deposition is investigated for use in applications requiring the control of thermal and solar radiation propagating through glass windows. In particular, metal-dielectric multilayer structures reflecting UV, near-infrared and thermal radiations whilst maintaining a maximum transmission in the visible range are prepared using both an E-Beam and Thermal evaporator and a RF Magnetron sputtering system. Measured transmittance spectra for the developed structures are in agreement with simulation results and demonstrate that with the use of optimum metal-dielectric layer combination it is possible to realize a coated glass transmitting most of the visible light through and reflecting most of the UV, solar and thermal infrared radiations.","PeriodicalId":334187,"journal":{"name":"High Capacity Optical Networks and Emerging/Enabling Technologies","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Thin film coatings for solar and thermal radiation control prepared by physical vapour deposition\",\"authors\":\"Yamna El Mouedden, R. Alghamedi, M. Alam, M. Vasiliev, K. Alameh\",\"doi\":\"10.1109/HONET.2012.6421440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growth of multilayer thin film structures containing dielectric and metal layers using physical vapor deposition is investigated for use in applications requiring the control of thermal and solar radiation propagating through glass windows. In particular, metal-dielectric multilayer structures reflecting UV, near-infrared and thermal radiations whilst maintaining a maximum transmission in the visible range are prepared using both an E-Beam and Thermal evaporator and a RF Magnetron sputtering system. Measured transmittance spectra for the developed structures are in agreement with simulation results and demonstrate that with the use of optimum metal-dielectric layer combination it is possible to realize a coated glass transmitting most of the visible light through and reflecting most of the UV, solar and thermal infrared radiations.\",\"PeriodicalId\":334187,\"journal\":{\"name\":\"High Capacity Optical Networks and Emerging/Enabling Technologies\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Capacity Optical Networks and Emerging/Enabling Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HONET.2012.6421440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Capacity Optical Networks and Emerging/Enabling Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HONET.2012.6421440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thin film coatings for solar and thermal radiation control prepared by physical vapour deposition
Growth of multilayer thin film structures containing dielectric and metal layers using physical vapor deposition is investigated for use in applications requiring the control of thermal and solar radiation propagating through glass windows. In particular, metal-dielectric multilayer structures reflecting UV, near-infrared and thermal radiations whilst maintaining a maximum transmission in the visible range are prepared using both an E-Beam and Thermal evaporator and a RF Magnetron sputtering system. Measured transmittance spectra for the developed structures are in agreement with simulation results and demonstrate that with the use of optimum metal-dielectric layer combination it is possible to realize a coated glass transmitting most of the visible light through and reflecting most of the UV, solar and thermal infrared radiations.