{"title":"粒子群优化的改进及其在无模型pi - λ - dμ调谐问题中的应用","authors":"Deniz Sevis, Y. Denizhan","doi":"10.1109/INDS.2011.6024830","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improvement of Particle Swarm Optimization and its application to a model-free PIλDμ tuning problem\",\"authors\":\"Deniz Sevis, Y. Denizhan\",\"doi\":\"10.1109/INDS.2011.6024830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.\",\"PeriodicalId\":117809,\"journal\":{\"name\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDS.2011.6024830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improvement of Particle Swarm Optimization and its application to a model-free PIλDμ tuning problem
Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.