粒子群优化的改进及其在无模型pi - λ - dμ调谐问题中的应用

Deniz Sevis, Y. Denizhan
{"title":"粒子群优化的改进及其在无模型pi - λ - dμ调谐问题中的应用","authors":"Deniz Sevis, Y. Denizhan","doi":"10.1109/INDS.2011.6024830","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improvement of Particle Swarm Optimization and its application to a model-free PIλDμ tuning problem\",\"authors\":\"Deniz Sevis, Y. Denizhan\",\"doi\":\"10.1109/INDS.2011.6024830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.\",\"PeriodicalId\":117809,\"journal\":{\"name\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDS.2011.6024830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子群优化(PSO)是一种易于应用的基于种群的随机优化技术,它不需要太多的问题知识。然而,在许多情况下,有一些可用的先验知识可以用来改进优化过程。在这个贡献中,提出了一个新的框架,该框架允许将经典粒子群算法与利用可用先验知识的方法相结合。这种所谓的知识支持PSO (KS-PSO)方法被应用于一个特定的优化问题,即分数阶PID控制器的无模型整定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improvement of Particle Swarm Optimization and its application to a model-free PIλDμ tuning problem
Particle Swarm Optimization (PSO) is an easily applicable population-based stochastic optimization technique which does not require much knowledge about the problem at hand. However, in many cases there is some a priori knowledge available that can be used to improve the optimization process. In this contribution a novel framework is proposed that allows a combination of the classical PSO algorithm with a method for exploiting available a priori knowledge. This so-called Knowledge Supported PSO (KS-PSO) method is applied to a specific optimization problem, namely the model-free tuning of a fractional order PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信