面向大数据子空间学习的在线素描

M. Mardani, G. Giannakis
{"title":"面向大数据子空间学习的在线素描","authors":"M. Mardani, G. Giannakis","doi":"10.1109/EUSIPCO.2015.7362837","DOIUrl":null,"url":null,"abstract":"Sketching (a.k.a. subsampling) high-dimensional data is a crucial task to facilitate data acquisition process e.g., in magnetic resonance imaging, and to render affordable `Big Data' analytics. Multidimensional nature and the need for realtime processing of data however pose major obstacles. To cope with these challenges, the present paper brings forth a novel real-time sketching scheme that exploits the correlations across data stream to learn a latent subspace based upon tensor PARAFAC decomposition `on the fly.' Leveraging the online subspace updates, we introduce a notion of importance score, which is subsequently adapted into a randomization scheme to predict a minimal subset of important features to acquire in the next time instant. Preliminary tests with synthetic data corroborate the effectiveness of the novel scheme relative to uniform sampling.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online sketching for big data subspace learning\",\"authors\":\"M. Mardani, G. Giannakis\",\"doi\":\"10.1109/EUSIPCO.2015.7362837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sketching (a.k.a. subsampling) high-dimensional data is a crucial task to facilitate data acquisition process e.g., in magnetic resonance imaging, and to render affordable `Big Data' analytics. Multidimensional nature and the need for realtime processing of data however pose major obstacles. To cope with these challenges, the present paper brings forth a novel real-time sketching scheme that exploits the correlations across data stream to learn a latent subspace based upon tensor PARAFAC decomposition `on the fly.' Leveraging the online subspace updates, we introduce a notion of importance score, which is subsequently adapted into a randomization scheme to predict a minimal subset of important features to acquire in the next time instant. Preliminary tests with synthetic data corroborate the effectiveness of the novel scheme relative to uniform sampling.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

绘制高维数据(又称子采样)是促进数据采集过程的关键任务,例如在磁共振成像中,并提供负担得起的“大数据”分析。然而,多维性和对数据实时处理的需求构成了主要障碍。为了应对这些挑战,本文提出了一种新的实时绘图方案,该方案利用数据流之间的相关性来学习基于张量PARAFAC分解的潜在子空间。利用在线子空间更新,我们引入了重要性分数的概念,随后将其适应于随机化方案,以预测在下一个时间瞬间要获取的重要特征的最小子集。综合数据的初步试验证实了该方法相对于均匀采样的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online sketching for big data subspace learning
Sketching (a.k.a. subsampling) high-dimensional data is a crucial task to facilitate data acquisition process e.g., in magnetic resonance imaging, and to render affordable `Big Data' analytics. Multidimensional nature and the need for realtime processing of data however pose major obstacles. To cope with these challenges, the present paper brings forth a novel real-time sketching scheme that exploits the correlations across data stream to learn a latent subspace based upon tensor PARAFAC decomposition `on the fly.' Leveraging the online subspace updates, we introduce a notion of importance score, which is subsequently adapted into a randomization scheme to predict a minimal subset of important features to acquire in the next time instant. Preliminary tests with synthetic data corroborate the effectiveness of the novel scheme relative to uniform sampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信