改进蚁群算法在矿井机车调度问题中的应用

Guo-ning Gan, Ting-lei Huang, Shuai Gao
{"title":"改进蚁群算法在矿井机车调度问题中的应用","authors":"Guo-ning Gan, Ting-lei Huang, Shuai Gao","doi":"10.1109/ANTHOLOGY.2013.6784852","DOIUrl":null,"url":null,"abstract":"Ant Colony Algorithm has some advantages in solving complex optimization problems, in particular discrete optimization problem. A mine locomotive scheduling algorithm based on the improved Ant Colony Algorithm for the mine locomotive scheduling problem has proposed in this paper. The method takes simulated annealing algorithm as a local search strategy of ant colony algorithm, aim at expanding the solution search space, avoiding falling into local optimum that improve convergence rate of the algorithm by dynamic pheromone evaporation factor. Simulation results show that the algorithm is more efficiency in locomotive scheduling than the basic ant colony algorithm.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of the improved Ant Colony Algorithm in mine locomotive scheduling problem\",\"authors\":\"Guo-ning Gan, Ting-lei Huang, Shuai Gao\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant Colony Algorithm has some advantages in solving complex optimization problems, in particular discrete optimization problem. A mine locomotive scheduling algorithm based on the improved Ant Colony Algorithm for the mine locomotive scheduling problem has proposed in this paper. The method takes simulated annealing algorithm as a local search strategy of ant colony algorithm, aim at expanding the solution search space, avoiding falling into local optimum that improve convergence rate of the algorithm by dynamic pheromone evaporation factor. Simulation results show that the algorithm is more efficiency in locomotive scheduling than the basic ant colony algorithm.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蚁群算法在求解复杂优化问题,特别是离散优化问题方面具有一定的优势。针对矿井机车调度问题,提出了一种基于改进蚁群算法的矿井机车调度算法。该方法将模拟退火算法作为蚁群算法的局部搜索策略,旨在扩大解的搜索空间,避免陷入局部最优,通过动态信息素蒸发因子提高算法的收敛速度。仿真结果表明,该算法比基本蚁群算法具有更高的调度效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of the improved Ant Colony Algorithm in mine locomotive scheduling problem
Ant Colony Algorithm has some advantages in solving complex optimization problems, in particular discrete optimization problem. A mine locomotive scheduling algorithm based on the improved Ant Colony Algorithm for the mine locomotive scheduling problem has proposed in this paper. The method takes simulated annealing algorithm as a local search strategy of ant colony algorithm, aim at expanding the solution search space, avoiding falling into local optimum that improve convergence rate of the algorithm by dynamic pheromone evaporation factor. Simulation results show that the algorithm is more efficiency in locomotive scheduling than the basic ant colony algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信