地理框架下COVID-19流行病学模型的敏感性分析

Zhongying Wang, Orhun Aydin
{"title":"地理框架下COVID-19流行病学模型的敏感性分析","authors":"Zhongying Wang, Orhun Aydin","doi":"10.1145/3423459.3430755","DOIUrl":null,"url":null,"abstract":"Spatial sciences and geography have been integral to the modeling of and communicating information pertaining to the COVID-19 pandemic. Epidemiological models are being used within a geographic context to map the spread of the novel SARS-CoV-2 virus and to make decisions regarding state-wide interventions and allocating hospital resources. Data required for epidemiological models are often incomplete, biased, and available for a spatial unit more extensive than the one needed for decision-making. In this paper, we present results on a global sensitivity analysis of epidemiological model parameters on an important design variable, time to peak number of cases, within a geographic context. We design experiments for quantifying the impact of uncertainty of epidemiological model parameters on distribution of peak times for the state of California. We conduct our analysis at the county-level and perform a non-parametric, global sensitivity analysis to quantify interplay between the uncertainty of epidemiological parameters and design variables.","PeriodicalId":118865,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sensitivity Analysis for COVID-19 Epidemiological Models within a Geographic Framework\",\"authors\":\"Zhongying Wang, Orhun Aydin\",\"doi\":\"10.1145/3423459.3430755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial sciences and geography have been integral to the modeling of and communicating information pertaining to the COVID-19 pandemic. Epidemiological models are being used within a geographic context to map the spread of the novel SARS-CoV-2 virus and to make decisions regarding state-wide interventions and allocating hospital resources. Data required for epidemiological models are often incomplete, biased, and available for a spatial unit more extensive than the one needed for decision-making. In this paper, we present results on a global sensitivity analysis of epidemiological model parameters on an important design variable, time to peak number of cases, within a geographic context. We design experiments for quantifying the impact of uncertainty of epidemiological model parameters on distribution of peak times for the state of California. We conduct our analysis at the county-level and perform a non-parametric, global sensitivity analysis to quantify interplay between the uncertainty of epidemiological parameters and design variables.\",\"PeriodicalId\":118865,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423459.3430755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and Understanding the Spread of COVID-19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423459.3430755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

空间科学和地理学在建模和传播与COVID-19大流行有关的信息方面发挥了不可或缺的作用。流行病学模型正在地理背景下使用,以绘制新型SARS-CoV-2病毒的传播情况,并就全州干预措施和医院资源分配做出决定。流行病学模型所需的数据往往是不完整的、有偏差的,并且可用于比决策所需的空间单位更广泛的空间单位。在本文中,我们介绍了流行病学模型参数在地理背景下对一个重要设计变量,即高峰病例数时间的全球敏感性分析结果。我们设计了实验来量化流行病学模型参数的不确定性对加利福尼亚州高峰时间分布的影响。我们在县一级进行分析,并进行非参数的全球敏感性分析,以量化流行病学参数的不确定性与设计变量之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Analysis for COVID-19 Epidemiological Models within a Geographic Framework
Spatial sciences and geography have been integral to the modeling of and communicating information pertaining to the COVID-19 pandemic. Epidemiological models are being used within a geographic context to map the spread of the novel SARS-CoV-2 virus and to make decisions regarding state-wide interventions and allocating hospital resources. Data required for epidemiological models are often incomplete, biased, and available for a spatial unit more extensive than the one needed for decision-making. In this paper, we present results on a global sensitivity analysis of epidemiological model parameters on an important design variable, time to peak number of cases, within a geographic context. We design experiments for quantifying the impact of uncertainty of epidemiological model parameters on distribution of peak times for the state of California. We conduct our analysis at the county-level and perform a non-parametric, global sensitivity analysis to quantify interplay between the uncertainty of epidemiological parameters and design variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信