布谷鸟搜索法确定运行光伏组件温度建模中的人工神经网络训练参数

S. Sulaiman, N. Zainol, Z. Othman, H. Zainuddin
{"title":"布谷鸟搜索法确定运行光伏组件温度建模中的人工神经网络训练参数","authors":"S. Sulaiman, N. Zainol, Z. Othman, H. Zainuddin","doi":"10.1109/ICMIC.2014.7020770","DOIUrl":null,"url":null,"abstract":"Temperature of the photovoltaic (PV) module of a PV system is a significant factor in PV system operation. As the module temperature increases, the voltage of the module decreases. This leads to a reduction in the overall output power. As a result, the modeling of operating PV module temperature is important to investigate the climatic factors which affect the PV module temperature. This paper presents the modeling of operating PV module temperature using an Artificial Neural Network (ANN) with solar irradiance and ambient temperature set as the ANN inputs. Besides that, Cuckoo Search (CS) was employed to determine the optimal number of neurons of the ANN hidden layer, learning rate and momentum rate such that the Mean Absolute Percentage Error (MAPE) of the modeling is minimized. CS was found to outperform an Artificial Bee Colony (ABC) algorithm in optimizing the ANN parameters during training by producing lower MAPE.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Cuckoo search for determining Artificial Neural Network training parameters in modeling operating photovoltaic module temperature\",\"authors\":\"S. Sulaiman, N. Zainol, Z. Othman, H. Zainuddin\",\"doi\":\"10.1109/ICMIC.2014.7020770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature of the photovoltaic (PV) module of a PV system is a significant factor in PV system operation. As the module temperature increases, the voltage of the module decreases. This leads to a reduction in the overall output power. As a result, the modeling of operating PV module temperature is important to investigate the climatic factors which affect the PV module temperature. This paper presents the modeling of operating PV module temperature using an Artificial Neural Network (ANN) with solar irradiance and ambient temperature set as the ANN inputs. Besides that, Cuckoo Search (CS) was employed to determine the optimal number of neurons of the ANN hidden layer, learning rate and momentum rate such that the Mean Absolute Percentage Error (MAPE) of the modeling is minimized. CS was found to outperform an Artificial Bee Colony (ABC) algorithm in optimizing the ANN parameters during training by producing lower MAPE.\",\"PeriodicalId\":405363,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2014.7020770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

光伏系统组件温度是影响光伏系统运行的重要因素。随着模块温度的升高,模块电压降低。这将导致总体输出功率的降低。因此,光伏组件运行温度建模对于研究影响光伏组件温度的气候因素具有重要意义。本文以太阳辐照度和环境温度为输入,采用人工神经网络(ANN)对光伏组件运行温度进行建模。此外,采用布谷鸟搜索(Cuckoo Search, CS)确定神经网络隐藏层的最优神经元数、学习率和动量率,使建模的平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)最小化。CS算法在训练过程中产生更低的MAPE,在优化ANN参数方面优于人工蜂群算法(ABC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cuckoo search for determining Artificial Neural Network training parameters in modeling operating photovoltaic module temperature
Temperature of the photovoltaic (PV) module of a PV system is a significant factor in PV system operation. As the module temperature increases, the voltage of the module decreases. This leads to a reduction in the overall output power. As a result, the modeling of operating PV module temperature is important to investigate the climatic factors which affect the PV module temperature. This paper presents the modeling of operating PV module temperature using an Artificial Neural Network (ANN) with solar irradiance and ambient temperature set as the ANN inputs. Besides that, Cuckoo Search (CS) was employed to determine the optimal number of neurons of the ANN hidden layer, learning rate and momentum rate such that the Mean Absolute Percentage Error (MAPE) of the modeling is minimized. CS was found to outperform an Artificial Bee Colony (ABC) algorithm in optimizing the ANN parameters during training by producing lower MAPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信