可在无气体条件下焊接的银芯镀金线具有高可靠性

Sung-min Jeon, Sang-Yeob Kim, Sung-Young Lee, Hyun-Jun Park, Minaeva Ra, Monghyun Cho, J. Moon
{"title":"可在无气体条件下焊接的银芯镀金线具有高可靠性","authors":"Sung-min Jeon, Sang-Yeob Kim, Sung-Young Lee, Hyun-Jun Park, Minaeva Ra, Monghyun Cho, J. Moon","doi":"10.1109/EPTC56328.2022.10013192","DOIUrl":null,"url":null,"abstract":"The bonding wire that connects electrical signals for semiconductor PKG mainly used Au material, but it is being replaced with relatively cheaper material such as Cu and Ag due to a steady rise in Au prices. However, materials such as Cu or Ag to replace Au have a common problem in that the free air ball is oxidized by reaction with oxygen in the atmosphere when forming the free air ball, and thus a spherical free air ball cannot be formed. And since Cu wire has high hardness, there is a limitation in that it cannot completely replace Au wire due to a problem that may cause damage to the Al pad during bonding. In this study, we developed ACA (Au Coated Ag) bonding wire in which Au is plated on the surface of the Ag core which has similar hardness to that of Au to replace the Au wire. When the ACA is melted in the air atmosphere, Au on the wire surface melts and wraps around the molten Ag core to prevent oxidation and also prevents oxygen adsorption to the molten Ag core. Due to this, high surface tension is maintained and a spherical free air ball is formed even in air atmosphere. In addition, in the high-temperature reliability evaluation conducted by bonding the free air ball of ACA formed in the atmospheric atmosphere to the Al pad, the advantage of not forming Kirkendall voids was confirmed because the IMC growth rate of ACA-Al bond was slower than that of the Au-Al bond. Therefore, it was found that the high temperature reliability of the ACA-Al bond was superior to that of the Au-Al bond.","PeriodicalId":163034,"journal":{"name":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High reliability performance of Ag-cored Au coated wire capable of bonding in gas free condition\",\"authors\":\"Sung-min Jeon, Sang-Yeob Kim, Sung-Young Lee, Hyun-Jun Park, Minaeva Ra, Monghyun Cho, J. Moon\",\"doi\":\"10.1109/EPTC56328.2022.10013192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bonding wire that connects electrical signals for semiconductor PKG mainly used Au material, but it is being replaced with relatively cheaper material such as Cu and Ag due to a steady rise in Au prices. However, materials such as Cu or Ag to replace Au have a common problem in that the free air ball is oxidized by reaction with oxygen in the atmosphere when forming the free air ball, and thus a spherical free air ball cannot be formed. And since Cu wire has high hardness, there is a limitation in that it cannot completely replace Au wire due to a problem that may cause damage to the Al pad during bonding. In this study, we developed ACA (Au Coated Ag) bonding wire in which Au is plated on the surface of the Ag core which has similar hardness to that of Au to replace the Au wire. When the ACA is melted in the air atmosphere, Au on the wire surface melts and wraps around the molten Ag core to prevent oxidation and also prevents oxygen adsorption to the molten Ag core. Due to this, high surface tension is maintained and a spherical free air ball is formed even in air atmosphere. In addition, in the high-temperature reliability evaluation conducted by bonding the free air ball of ACA formed in the atmospheric atmosphere to the Al pad, the advantage of not forming Kirkendall voids was confirmed because the IMC growth rate of ACA-Al bond was slower than that of the Au-Al bond. Therefore, it was found that the high temperature reliability of the ACA-Al bond was superior to that of the Au-Al bond.\",\"PeriodicalId\":163034,\"journal\":{\"name\":\"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC56328.2022.10013192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC56328.2022.10013192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半导体PKG中连接电信号的键合线主要使用的是Au材料,但由于Au价格的持续上涨,正在被Cu和Ag等相对便宜的材料所取代。然而,Cu或Ag等替代Au的材料有一个共同的问题,即自由空气球在形成时与大气中的氧反应而被氧化,从而不能形成球形的自由空气球。而且由于铜丝的硬度较高,因此存在不能完全取代金丝的局限性,因为在键合过程中可能会损坏Al焊盘。在这项研究中,我们开发了ACA (Au Coated Ag)键合线,将Au镀在与Au硬度相似的Ag芯表面,以取代Au线。当ACA在空气中熔化时,导线表面的Au熔化并包裹在熔融银芯周围,以防止氧化,也防止氧气吸附到熔融银芯上。因此,即使在空气中也能保持高表面张力,形成球形的自由空气球。此外,在将大气中形成的ACA的自由空气球与Al焊盘结合进行高温可靠性评估时,由于ACA-Al键的IMC增长速度比Au-Al键慢,证实了ACA-Al键不形成Kirkendall空洞的优势。因此,我们发现ACA-Al键的高温可靠性优于Au-Al键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High reliability performance of Ag-cored Au coated wire capable of bonding in gas free condition
The bonding wire that connects electrical signals for semiconductor PKG mainly used Au material, but it is being replaced with relatively cheaper material such as Cu and Ag due to a steady rise in Au prices. However, materials such as Cu or Ag to replace Au have a common problem in that the free air ball is oxidized by reaction with oxygen in the atmosphere when forming the free air ball, and thus a spherical free air ball cannot be formed. And since Cu wire has high hardness, there is a limitation in that it cannot completely replace Au wire due to a problem that may cause damage to the Al pad during bonding. In this study, we developed ACA (Au Coated Ag) bonding wire in which Au is plated on the surface of the Ag core which has similar hardness to that of Au to replace the Au wire. When the ACA is melted in the air atmosphere, Au on the wire surface melts and wraps around the molten Ag core to prevent oxidation and also prevents oxygen adsorption to the molten Ag core. Due to this, high surface tension is maintained and a spherical free air ball is formed even in air atmosphere. In addition, in the high-temperature reliability evaluation conducted by bonding the free air ball of ACA formed in the atmospheric atmosphere to the Al pad, the advantage of not forming Kirkendall voids was confirmed because the IMC growth rate of ACA-Al bond was slower than that of the Au-Al bond. Therefore, it was found that the high temperature reliability of the ACA-Al bond was superior to that of the Au-Al bond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信