考虑Weibull和指数分布的WMNs节点布局进化计算过程可视化

Admir Barolli, Tetsuya Oda, Evjola Spaho, L. Barolli, F. Xhafa, M. Takizawa
{"title":"考虑Weibull和指数分布的WMNs节点布局进化计算过程可视化","authors":"Admir Barolli, Tetsuya Oda, Evjola Spaho, L. Barolli, F. Xhafa, M. Takizawa","doi":"10.1109/EIDWT.2012.12","DOIUrl":null,"url":null,"abstract":"In this paper, we use WMN-GA system for node placement problem in WMNs. For a given grid size and a given number of mesh nodes, our WMN-GA system use Genetic Algorithms (GAs) to find where to position the mesh nodes in order to maximize the coverage and the connectivity of the network. We evaluate and compare the performance of Weibull and Exponential distributions considering giant component and number of covered users parameters. For both scenarios, we present the visualization of evolutionary computation process. The simulation results show that for Weibull distribution the system has better performance.","PeriodicalId":222292,"journal":{"name":"2012 Third International Conference on Emerging Intelligent Data and Web Technologies","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Evolutionary Computation Process for Node Placement in WMNs Considering Weibull and Exponential Distribution of Mesh Clients\",\"authors\":\"Admir Barolli, Tetsuya Oda, Evjola Spaho, L. Barolli, F. Xhafa, M. Takizawa\",\"doi\":\"10.1109/EIDWT.2012.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use WMN-GA system for node placement problem in WMNs. For a given grid size and a given number of mesh nodes, our WMN-GA system use Genetic Algorithms (GAs) to find where to position the mesh nodes in order to maximize the coverage and the connectivity of the network. We evaluate and compare the performance of Weibull and Exponential distributions considering giant component and number of covered users parameters. For both scenarios, we present the visualization of evolutionary computation process. The simulation results show that for Weibull distribution the system has better performance.\",\"PeriodicalId\":222292,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Intelligent Data and Web Technologies\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Intelligent Data and Web Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIDWT.2012.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Intelligent Data and Web Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIDWT.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用WMN-GA系统来解决wmn网络中的节点放置问题。对于给定的网格大小和给定数量的网格节点,我们的WMN-GA系统使用遗传算法(GAs)来找到网格节点的位置,以最大限度地提高网络的覆盖率和连通性。考虑到巨大的分量和覆盖用户参数的数量,我们评估和比较了威布尔分布和指数分布的性能。针对这两种情况,我们提出了进化计算过程的可视化。仿真结果表明,对于威布尔分布,该系统具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of Evolutionary Computation Process for Node Placement in WMNs Considering Weibull and Exponential Distribution of Mesh Clients
In this paper, we use WMN-GA system for node placement problem in WMNs. For a given grid size and a given number of mesh nodes, our WMN-GA system use Genetic Algorithms (GAs) to find where to position the mesh nodes in order to maximize the coverage and the connectivity of the network. We evaluate and compare the performance of Weibull and Exponential distributions considering giant component and number of covered users parameters. For both scenarios, we present the visualization of evolutionary computation process. The simulation results show that for Weibull distribution the system has better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信