无人机辅助通信中空对地信道重构的有效算法

Junting Chen, Omid Esrafilian, D. Gesbert, U. Mitra
{"title":"无人机辅助通信中空对地信道重构的有效算法","authors":"Junting Chen, Omid Esrafilian, D. Gesbert, U. Mitra","doi":"10.1109/GLOCOMW.2017.8269065","DOIUrl":null,"url":null,"abstract":"This paper develops an efficient algorithm to learn and reconstruct from a small measurement samples an air-to-ground radio map with fine- grained propagation details so as to predict the signal strength between a wireless equipped UAV and arbitrary ground users, and ultimately the optimal position of the UAV as a mobile relay. In this paper, a joint data clustering and parameter estimation algorithm is developed to learn an multi-segment propagation model from energy measurements that may contain large observation noise. To reduce the reconstruction complexity, we propose to learn a hidden multi-class virtual obstacle model to help efficiently predict the air-to-ground channel. Numerical results demonstrate that the channel prediction error is significantly reduced, and meanwhile, the radio map reconstruction time is reduced to 1/300.","PeriodicalId":345352,"journal":{"name":"2017 IEEE Globecom Workshops (GC Wkshps)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Efficient Algorithms for Air-to-Ground Channel Reconstruction in UAV-Aided Communications\",\"authors\":\"Junting Chen, Omid Esrafilian, D. Gesbert, U. Mitra\",\"doi\":\"10.1109/GLOCOMW.2017.8269065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an efficient algorithm to learn and reconstruct from a small measurement samples an air-to-ground radio map with fine- grained propagation details so as to predict the signal strength between a wireless equipped UAV and arbitrary ground users, and ultimately the optimal position of the UAV as a mobile relay. In this paper, a joint data clustering and parameter estimation algorithm is developed to learn an multi-segment propagation model from energy measurements that may contain large observation noise. To reduce the reconstruction complexity, we propose to learn a hidden multi-class virtual obstacle model to help efficiently predict the air-to-ground channel. Numerical results demonstrate that the channel prediction error is significantly reduced, and meanwhile, the radio map reconstruction time is reduced to 1/300.\",\"PeriodicalId\":345352,\"journal\":{\"name\":\"2017 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2017.8269065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2017.8269065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文开发了一种有效的算法,从一个小的测量样本中学习和重建具有细粒度传播细节的空对地无线电图,从而预测无线装备的无人机与任意地面用户之间的信号强度,最终确定无人机作为移动中继的最佳位置。本文提出了一种数据聚类和参数估计联合算法,用于从可能含有较大观测噪声的能量测量数据中学习多段传播模型。为了降低重建复杂度,我们提出学习一种隐藏的多类虚拟障碍物模型来帮助有效地预测空对地通道。数值结果表明,该方法显著降低了信道预测误差,同时将电波图重建时间减少到1/300。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithms for Air-to-Ground Channel Reconstruction in UAV-Aided Communications
This paper develops an efficient algorithm to learn and reconstruct from a small measurement samples an air-to-ground radio map with fine- grained propagation details so as to predict the signal strength between a wireless equipped UAV and arbitrary ground users, and ultimately the optimal position of the UAV as a mobile relay. In this paper, a joint data clustering and parameter estimation algorithm is developed to learn an multi-segment propagation model from energy measurements that may contain large observation noise. To reduce the reconstruction complexity, we propose to learn a hidden multi-class virtual obstacle model to help efficiently predict the air-to-ground channel. Numerical results demonstrate that the channel prediction error is significantly reduced, and meanwhile, the radio map reconstruction time is reduced to 1/300.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信