通过Pólya的计数和简洁的表示枚举n维正交多面体的构型

R. Pérez-Aguila
{"title":"通过Pólya的计数和简洁的表示枚举n维正交多面体的构型","authors":"R. Pérez-Aguila","doi":"10.1109/ICEEE.2006.251849","DOIUrl":null,"url":null,"abstract":"This article will describe Polya's countings as a methodology for determining the number of configurations to be present in the nD orthogonal pseudo-polytopes. Banks et al have used this methodology for counting configurations, in 1D to 4D spaces, under the context of the dual problem. We will describe a concise and simple representation for the configurations that provides the elements to reach the 5D and 6D cases and therefore to obtain their corresponding countings","PeriodicalId":125310,"journal":{"name":"2006 3rd International Conference on Electrical and Electronics Engineering","volume":"34 39","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Pólya's Countings and A Concise Representation\",\"authors\":\"R. Pérez-Aguila\",\"doi\":\"10.1109/ICEEE.2006.251849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article will describe Polya's countings as a methodology for determining the number of configurations to be present in the nD orthogonal pseudo-polytopes. Banks et al have used this methodology for counting configurations, in 1D to 4D spaces, under the context of the dual problem. We will describe a concise and simple representation for the configurations that provides the elements to reach the 5D and 6D cases and therefore to obtain their corresponding countings\",\"PeriodicalId\":125310,\"journal\":{\"name\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"volume\":\"34 39\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2006.251849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2006.251849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将描述Polya计数作为确定nD正交伪多面体中存在的构型数量的方法。Banks等人在对偶问题的背景下,使用这种方法在1D到4D空间中计算构型。我们将描述一个简洁的配置表示,该配置提供了达到5D和6D情况的元素,从而获得相应的计数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Pólya's Countings and A Concise Representation
This article will describe Polya's countings as a methodology for determining the number of configurations to be present in the nD orthogonal pseudo-polytopes. Banks et al have used this methodology for counting configurations, in 1D to 4D spaces, under the context of the dual problem. We will describe a concise and simple representation for the configurations that provides the elements to reach the 5D and 6D cases and therefore to obtain their corresponding countings
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信