机器学习在语音科学中的应用

R. Trencsényi, L. Czap
{"title":"机器学习在语音科学中的应用","authors":"R. Trencsényi, L. Czap","doi":"10.1109/iccc54292.2022.9805885","DOIUrl":null,"url":null,"abstract":"We study the qualitative and quantitative information acquired from two-dimensional dynamic audiovisual sources storing synchronized image and sound signals recorded during human speech. Our main tool is machine learning, which connects data arising from records made by ultrasound (US) and magnetic resonance imaging (MRI) techniques. As a starting point, we track the tongue contours of the US and MRI frames utilizing our automatic algorithms. The constructed neural network is stimulated by data derived from the US tongue contours, and parameters obtained from the MRI tongue contours are assigned to the output of the system. By varying the number of input parameters, we create several system settings and test the operation and efficiency of the network for all configurations.","PeriodicalId":167963,"journal":{"name":"2022 23rd International Carpathian Control Conference (ICCC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Applied in Speech Science\",\"authors\":\"R. Trencsényi, L. Czap\",\"doi\":\"10.1109/iccc54292.2022.9805885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the qualitative and quantitative information acquired from two-dimensional dynamic audiovisual sources storing synchronized image and sound signals recorded during human speech. Our main tool is machine learning, which connects data arising from records made by ultrasound (US) and magnetic resonance imaging (MRI) techniques. As a starting point, we track the tongue contours of the US and MRI frames utilizing our automatic algorithms. The constructed neural network is stimulated by data derived from the US tongue contours, and parameters obtained from the MRI tongue contours are assigned to the output of the system. By varying the number of input parameters, we create several system settings and test the operation and efficiency of the network for all configurations.\",\"PeriodicalId\":167963,\"journal\":{\"name\":\"2022 23rd International Carpathian Control Conference (ICCC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 23rd International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc54292.2022.9805885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 23rd International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc54292.2022.9805885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了从二维动态音像源中获取的定性和定量信息,这些音像源存储了人类语言过程中记录的同步图像和声音信号。我们的主要工具是机器学习,它将超声波(US)和磁共振成像(MRI)技术记录产生的数据联系起来。作为起点,我们利用自动算法跟踪US和MRI框架的舌头轮廓。构建的神经网络由来自美国舌头轮廓的数据进行刺激,并将从MRI舌头轮廓中获得的参数分配给系统的输出。通过改变输入参数的数量,我们创建了几个系统设置,并测试了所有配置下网络的运行和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Applied in Speech Science
We study the qualitative and quantitative information acquired from two-dimensional dynamic audiovisual sources storing synchronized image and sound signals recorded during human speech. Our main tool is machine learning, which connects data arising from records made by ultrasound (US) and magnetic resonance imaging (MRI) techniques. As a starting point, we track the tongue contours of the US and MRI frames utilizing our automatic algorithms. The constructed neural network is stimulated by data derived from the US tongue contours, and parameters obtained from the MRI tongue contours are assigned to the output of the system. By varying the number of input parameters, we create several system settings and test the operation and efficiency of the network for all configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信