用人工神经网络建模负载变化以改善片上OSLT校准

J. Jargon, P. Kirby, K. Gupta, L. Dunleavy, T. Weller
{"title":"用人工神经网络建模负载变化以改善片上OSLT校准","authors":"J. Jargon, P. Kirby, K. Gupta, L. Dunleavy, T. Weller","doi":"10.1109/ARFTG.2000.327430","DOIUrl":null,"url":null,"abstract":"We demonstrate that on-wafer open-short-load-thru (OSLT) calibrations of vector network analyzers can be improved by applying artificial neural networks (ANNs) to model the correlation between DC resistance and RF variations in load terminations. The ANNs are trained with measurement data obtained from a benchmark multiline thru-reflect-line (TRL) calibration. The open, short, and thru standards do not vary significantly from wafer to wafer, so we also model these standards using ANNs trained with calibrated measurement data chosen from an arbitrary wafer. We assess the accuracy of five OSLT calibrations with varying load terminations using the ANN-modeled standards, and find that they compare favorably (a difference of less than 0.04 in magnitude at most frequencies) to the benchmark multiline TRL calibration over a 66 GHz bandwidth. We demonstrate that ANN models offer a number of advantages over using calibrated measurement files or equivalent circuit models, including ease of use, reduced calibration times, and compactness.","PeriodicalId":166771,"journal":{"name":"56th ARFTG Conference Digest","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modeling Load Variations with Artificial Neural Networks to Improve On-Wafer OSLT Calibrations\",\"authors\":\"J. Jargon, P. Kirby, K. Gupta, L. Dunleavy, T. Weller\",\"doi\":\"10.1109/ARFTG.2000.327430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that on-wafer open-short-load-thru (OSLT) calibrations of vector network analyzers can be improved by applying artificial neural networks (ANNs) to model the correlation between DC resistance and RF variations in load terminations. The ANNs are trained with measurement data obtained from a benchmark multiline thru-reflect-line (TRL) calibration. The open, short, and thru standards do not vary significantly from wafer to wafer, so we also model these standards using ANNs trained with calibrated measurement data chosen from an arbitrary wafer. We assess the accuracy of five OSLT calibrations with varying load terminations using the ANN-modeled standards, and find that they compare favorably (a difference of less than 0.04 in magnitude at most frequencies) to the benchmark multiline TRL calibration over a 66 GHz bandwidth. We demonstrate that ANN models offer a number of advantages over using calibrated measurement files or equivalent circuit models, including ease of use, reduced calibration times, and compactness.\",\"PeriodicalId\":166771,\"journal\":{\"name\":\"56th ARFTG Conference Digest\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"56th ARFTG Conference Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARFTG.2000.327430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"56th ARFTG Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.2000.327430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们证明,通过应用人工神经网络(ann)来模拟负载终止时直流电阻和射频变化之间的相关性,可以改善矢量网络分析仪的晶片上开短负载通过(OSLT)校准。人工神经网络使用从基准多线透反射线(TRL)校准获得的测量数据进行训练。不同晶圆片之间的开放标准、短标准和贯穿标准没有显著差异,因此我们还使用从任意晶圆片中选择的校准测量数据训练的人工神经网络对这些标准进行建模。我们使用人工神经网络模型标准评估了五种具有不同负载终止的OSLT校准的准确性,并发现它们与66 GHz带宽上的基准多线TRL校准相比具有优势(在大多数频率上的幅度差异小于0.04)。我们证明,与使用校准的测量文件或等效电路模型相比,人工神经网络模型提供了许多优势,包括易于使用,减少校准时间和紧凑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Load Variations with Artificial Neural Networks to Improve On-Wafer OSLT Calibrations
We demonstrate that on-wafer open-short-load-thru (OSLT) calibrations of vector network analyzers can be improved by applying artificial neural networks (ANNs) to model the correlation between DC resistance and RF variations in load terminations. The ANNs are trained with measurement data obtained from a benchmark multiline thru-reflect-line (TRL) calibration. The open, short, and thru standards do not vary significantly from wafer to wafer, so we also model these standards using ANNs trained with calibrated measurement data chosen from an arbitrary wafer. We assess the accuracy of five OSLT calibrations with varying load terminations using the ANN-modeled standards, and find that they compare favorably (a difference of less than 0.04 in magnitude at most frequencies) to the benchmark multiline TRL calibration over a 66 GHz bandwidth. We demonstrate that ANN models offer a number of advantages over using calibrated measurement files or equivalent circuit models, including ease of use, reduced calibration times, and compactness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信