小波分析与色彩空间分解在人体荧光标记图像组织研究中的应用

Vyacheslav Lyashenko, O. Kobylin, A. Shafronenko
{"title":"小波分析与色彩空间分解在人体荧光标记图像组织研究中的应用","authors":"Vyacheslav Lyashenko, O. Kobylin, A. Shafronenko","doi":"10.1109/CAOL46282.2019.9019575","DOIUrl":null,"url":null,"abstract":"The image of human fluorescently labeled tissues is taken as short view of the subject. These images are in RGB format. We must highlight areas of interest. In this case we use the ideology of wavelets. It allows us to find a lot of points of the brightness change in the original image. We get additional information, as well as decompose the input image into separate color spaces. This allows us to specify the areas of interest for the original image. The advantage of the original image decomposition into separate color spaces is clearly shown in comparison with the image in the RGB format. The results are received by using the real images.","PeriodicalId":308704,"journal":{"name":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet Analysis and Decomposition Into Color Spaces in Researching of Human Fluorescently Labeled Images Tissues\",\"authors\":\"Vyacheslav Lyashenko, O. Kobylin, A. Shafronenko\",\"doi\":\"10.1109/CAOL46282.2019.9019575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image of human fluorescently labeled tissues is taken as short view of the subject. These images are in RGB format. We must highlight areas of interest. In this case we use the ideology of wavelets. It allows us to find a lot of points of the brightness change in the original image. We get additional information, as well as decompose the input image into separate color spaces. This allows us to specify the areas of interest for the original image. The advantage of the original image decomposition into separate color spaces is clearly shown in comparison with the image in the RGB format. The results are received by using the real images.\",\"PeriodicalId\":308704,\"journal\":{\"name\":\"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAOL46282.2019.9019575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAOL46282.2019.9019575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体荧光标记组织的图像被视为受试者的短视图。这些图像是RGB格式的。我们必须突出我们感兴趣的领域。在这种情况下,我们使用小波的思想。它可以让我们在原始图像中找到很多亮度变化的点。我们获得了额外的信息,并将输入图像分解为单独的色彩空间。这允许我们为原始图像指定感兴趣的区域。与RGB格式的图像相比,原始图像分解成独立色彩空间的优势明显。结果是利用真实图像得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet Analysis and Decomposition Into Color Spaces in Researching of Human Fluorescently Labeled Images Tissues
The image of human fluorescently labeled tissues is taken as short view of the subject. These images are in RGB format. We must highlight areas of interest. In this case we use the ideology of wavelets. It allows us to find a lot of points of the brightness change in the original image. We get additional information, as well as decompose the input image into separate color spaces. This allows us to specify the areas of interest for the original image. The advantage of the original image decomposition into separate color spaces is clearly shown in comparison with the image in the RGB format. The results are received by using the real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信