基于RRAM横杆的动态可配置物理不可克隆功能

Jiang Li, Yijun Cui, Chongyan Gu, Chenghua Wang, Weiqiang Liu
{"title":"基于RRAM横杆的动态可配置物理不可克隆功能","authors":"Jiang Li, Yijun Cui, Chongyan Gu, Chenghua Wang, Weiqiang Liu","doi":"10.1109/NANOARCH53687.2021.9642245","DOIUrl":null,"url":null,"abstract":"Physical unclonable function (PUF) has been an effective solution for hardware security with the popularity of the internet of things (IoT). Due to low power consumption and high area efficiency, an emerging nonvolatile memory, resistive random access memory (RRAM) based PUF designs have attracted many attentions. Due to the bottleneck in the existing RRAM PUFs that it can not be fully compatible with the memory architecture, a dynamically configurable PUF based on the mainstream RRAM crossbar is proposed in this paper. Utilizing the device-to-device variation of the RRAM resistance, abundant challenge-response pairs (CRPs) are generated with a flexible configuration of an RRAM crossbar. Furthermore, different from the existing RRAM-based PUF designs, the proposed RRAM PUF can be dynamically configured between a memory cell and a PUF cell, without requiring additional sense circuits, leading to a minimal design overhead. The simulation results show that the proposed PUF exhibits good performance with a high uniqueness and reliability. Moreover, it achieves a great resistance against machine learning (ML) attack.","PeriodicalId":424982,"journal":{"name":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamically Configurable Physical Unclonable Function based on RRAM Crossbar\",\"authors\":\"Jiang Li, Yijun Cui, Chongyan Gu, Chenghua Wang, Weiqiang Liu\",\"doi\":\"10.1109/NANOARCH53687.2021.9642245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical unclonable function (PUF) has been an effective solution for hardware security with the popularity of the internet of things (IoT). Due to low power consumption and high area efficiency, an emerging nonvolatile memory, resistive random access memory (RRAM) based PUF designs have attracted many attentions. Due to the bottleneck in the existing RRAM PUFs that it can not be fully compatible with the memory architecture, a dynamically configurable PUF based on the mainstream RRAM crossbar is proposed in this paper. Utilizing the device-to-device variation of the RRAM resistance, abundant challenge-response pairs (CRPs) are generated with a flexible configuration of an RRAM crossbar. Furthermore, different from the existing RRAM-based PUF designs, the proposed RRAM PUF can be dynamically configured between a memory cell and a PUF cell, without requiring additional sense circuits, leading to a minimal design overhead. The simulation results show that the proposed PUF exhibits good performance with a high uniqueness and reliability. Moreover, it achieves a great resistance against machine learning (ML) attack.\",\"PeriodicalId\":424982,\"journal\":{\"name\":\"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOARCH53687.2021.9642245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOARCH53687.2021.9642245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着物联网(IoT)的普及,物理不可克隆功能(PUF)已成为硬件安全的有效解决方案。由于低功耗和高面积效率,一种新兴的非易失性存储器——基于电阻式随机存取存储器(RRAM)的PUF设计受到了广泛的关注。针对现有RRAM PUF不能完全兼容内存架构的瓶颈,提出了一种基于主流RRAM crossbar的动态配置PUF。利用器件间RRAM电阻的变化,通过灵活的RRAM交叉杆结构产生大量的挑战响应对(CRPs)。此外,与现有基于RRAM的PUF设计不同,本文提出的RRAM PUF可以在存储单元和PUF单元之间动态配置,而不需要额外的感测电路,从而实现了最小的设计开销。仿真结果表明,该PUF具有良好的性能,具有较高的唯一性和可靠性。此外,它对机器学习(ML)攻击具有很强的抵抗力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically Configurable Physical Unclonable Function based on RRAM Crossbar
Physical unclonable function (PUF) has been an effective solution for hardware security with the popularity of the internet of things (IoT). Due to low power consumption and high area efficiency, an emerging nonvolatile memory, resistive random access memory (RRAM) based PUF designs have attracted many attentions. Due to the bottleneck in the existing RRAM PUFs that it can not be fully compatible with the memory architecture, a dynamically configurable PUF based on the mainstream RRAM crossbar is proposed in this paper. Utilizing the device-to-device variation of the RRAM resistance, abundant challenge-response pairs (CRPs) are generated with a flexible configuration of an RRAM crossbar. Furthermore, different from the existing RRAM-based PUF designs, the proposed RRAM PUF can be dynamically configured between a memory cell and a PUF cell, without requiring additional sense circuits, leading to a minimal design overhead. The simulation results show that the proposed PUF exhibits good performance with a high uniqueness and reliability. Moreover, it achieves a great resistance against machine learning (ML) attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信