有限集合上极小群类群的一种分类方法

Mike Behrisch, Hajime Machida
{"title":"有限集合上极小群类群的一种分类方法","authors":"Mike Behrisch, Hajime Machida","doi":"10.1109/ISMVL.2019.00036","DOIUrl":null,"url":null,"abstract":"A minimal groupoid is a minimal clone generated by a binary idempotent function. The classification of minimal groupoids on a finite set is not yet complete and seems to be quite a hard task. In this paper a new viewpoint is proposed toward the classification of minimal groupoids. The pr-distance is introduced for binary functions. Using this concept, the generators of 48 minimal groupoids on a 3-element set are classified into three classes: Commutative functions, functions with pr-distance 1 and those with pr-distance 2. Some of the results obtained for the 3-element case generalize to any finite case. In particular, a binary idempotent function on any finite set is proved to generate a minimal groupoid if its pr-distance is 1.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Approach Toward Classification of Minimal Groupoids on a Finite Set\",\"authors\":\"Mike Behrisch, Hajime Machida\",\"doi\":\"10.1109/ISMVL.2019.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A minimal groupoid is a minimal clone generated by a binary idempotent function. The classification of minimal groupoids on a finite set is not yet complete and seems to be quite a hard task. In this paper a new viewpoint is proposed toward the classification of minimal groupoids. The pr-distance is introduced for binary functions. Using this concept, the generators of 48 minimal groupoids on a 3-element set are classified into three classes: Commutative functions, functions with pr-distance 1 and those with pr-distance 2. Some of the results obtained for the 3-element case generalize to any finite case. In particular, a binary idempotent function on any finite set is proved to generate a minimal groupoid if its pr-distance is 1.\",\"PeriodicalId\":329986,\"journal\":{\"name\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2019.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最小群是由二元幂等函数生成的最小克隆。有限集合上的极小群类群的分类尚未完全,似乎是一项相当艰巨的任务。本文对极小群类群的分类问题提出了一个新的观点。引入了二元函数的pr距离。利用这一概念,将3元集合上48个极小群群的生成函数划分为3类:交换函数、距离为1的函数和距离为2的函数。在三元情况下得到的一些结果可以推广到任何有限情况。特别地,证明了任意有限集上的二元幂等函数,当其pr-距离为1时,可以生成极小群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach Toward Classification of Minimal Groupoids on a Finite Set
A minimal groupoid is a minimal clone generated by a binary idempotent function. The classification of minimal groupoids on a finite set is not yet complete and seems to be quite a hard task. In this paper a new viewpoint is proposed toward the classification of minimal groupoids. The pr-distance is introduced for binary functions. Using this concept, the generators of 48 minimal groupoids on a 3-element set are classified into three classes: Commutative functions, functions with pr-distance 1 and those with pr-distance 2. Some of the results obtained for the 3-element case generalize to any finite case. In particular, a binary idempotent function on any finite set is proved to generate a minimal groupoid if its pr-distance is 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信