CAD用于乳房x线照片中微钙化的检测和分类

Cansu Akbay, N. G. Gencer, Gül Gençer
{"title":"CAD用于乳房x线照片中微钙化的检测和分类","authors":"Cansu Akbay, N. G. Gencer, Gül Gençer","doi":"10.1109/BIYOMUT.2014.7026349","DOIUrl":null,"url":null,"abstract":"In this study, computer aided diagnosis (CAD) is developed to detect microcalficication cluster which is one of the important radiological findings of breast cancer diagnosis and classificiation. For this purpose, image processing and pattern recognition algorithms are applied on mamographic images. To make microcalcifications more visible wavelet transform and nonsubsampled contourlet transform (NSCT) methods are used for image enhancement. Their performances are compared. 52 features are extracted from the enhanced images.To reduce the dimension of the feature space, linear discriminant analysis is applied. It is observed that nonsubsampled contourlet transform outperforms the wavelet transform. Microcalcification clusters were classified by using support vector machine (SVM) by 94,6% correct rate.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CAD for detection of microcalcification and classification in mammograms\",\"authors\":\"Cansu Akbay, N. G. Gencer, Gül Gençer\",\"doi\":\"10.1109/BIYOMUT.2014.7026349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, computer aided diagnosis (CAD) is developed to detect microcalficication cluster which is one of the important radiological findings of breast cancer diagnosis and classificiation. For this purpose, image processing and pattern recognition algorithms are applied on mamographic images. To make microcalcifications more visible wavelet transform and nonsubsampled contourlet transform (NSCT) methods are used for image enhancement. Their performances are compared. 52 features are extracted from the enhanced images.To reduce the dimension of the feature space, linear discriminant analysis is applied. It is observed that nonsubsampled contourlet transform outperforms the wavelet transform. Microcalcification clusters were classified by using support vector machine (SVM) by 94,6% correct rate.\",\"PeriodicalId\":428610,\"journal\":{\"name\":\"2014 18th National Biomedical Engineering Meeting\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 18th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2014.7026349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究发展计算机辅助诊断(CAD)来检测微钙化簇,微钙化簇是乳腺癌诊断和分类的重要影像学表现之一。为此,图像处理和模式识别算法被应用于乳腺摄影图像。为了使微钙化更加明显,采用小波变换和非下采样轮廓波变换(NSCT)方法进行图像增强。他们的表演被比较。从增强图像中提取了52个特征。为了降低特征空间的维数,采用了线性判别分析方法。结果表明,非下采样轮廓波变换优于小波变换。采用支持向量机(SVM)对微钙化簇进行分类,正确率为94.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAD for detection of microcalcification and classification in mammograms
In this study, computer aided diagnosis (CAD) is developed to detect microcalficication cluster which is one of the important radiological findings of breast cancer diagnosis and classificiation. For this purpose, image processing and pattern recognition algorithms are applied on mamographic images. To make microcalcifications more visible wavelet transform and nonsubsampled contourlet transform (NSCT) methods are used for image enhancement. Their performances are compared. 52 features are extracted from the enhanced images.To reduce the dimension of the feature space, linear discriminant analysis is applied. It is observed that nonsubsampled contourlet transform outperforms the wavelet transform. Microcalcification clusters were classified by using support vector machine (SVM) by 94,6% correct rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信