基于人工神经网络的三相异步电动机转速控制

P. T. Cat, L. Linh, M. Pham
{"title":"基于人工神经网络的三相异步电动机转速控制","authors":"P. T. Cat, L. Linh, M. Pham","doi":"10.1109/ICCA.2010.5524407","DOIUrl":null,"url":null,"abstract":"Speed control of an alternating current (AC) motor has been one of the difficult control problems. Many approaches have been proposed to solve these problems. In this paper, a speed control method is proposed using artificial neural network (ANN) with an online self-learning algorithm to compensate uncertain parameters in the dynamics model of AC motor. The global asymptotic stability of the control system is proved using Lyapunov stability method. Simulation results on MATLAB show the reliability and accuracy of the proposed method.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Speed control of 3-phase asynchronous motor using artificial neural network\",\"authors\":\"P. T. Cat, L. Linh, M. Pham\",\"doi\":\"10.1109/ICCA.2010.5524407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speed control of an alternating current (AC) motor has been one of the difficult control problems. Many approaches have been proposed to solve these problems. In this paper, a speed control method is proposed using artificial neural network (ANN) with an online self-learning algorithm to compensate uncertain parameters in the dynamics model of AC motor. The global asymptotic stability of the control system is proved using Lyapunov stability method. Simulation results on MATLAB show the reliability and accuracy of the proposed method.\",\"PeriodicalId\":155562,\"journal\":{\"name\":\"IEEE ICCA 2010\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ICCA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2010.5524407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交流电机的转速控制一直是一个比较困难的控制问题。人们提出了许多方法来解决这些问题。针对交流电机动力学模型中的不确定参数,提出了一种基于在线自学习算法的人工神经网络(ANN)速度控制方法。利用李雅普诺夫稳定性方法证明了控制系统的全局渐近稳定性。MATLAB仿真结果表明了该方法的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed control of 3-phase asynchronous motor using artificial neural network
Speed control of an alternating current (AC) motor has been one of the difficult control problems. Many approaches have been proposed to solve these problems. In this paper, a speed control method is proposed using artificial neural network (ANN) with an online self-learning algorithm to compensate uncertain parameters in the dynamics model of AC motor. The global asymptotic stability of the control system is proved using Lyapunov stability method. Simulation results on MATLAB show the reliability and accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信