时变扰动下多usv的鲁棒覆盖控制

Qihai Sun, Zhiwei Liu, Ming Chi, Ming‐Feng Ge, Dingxin He
{"title":"时变扰动下多usv的鲁棒覆盖控制","authors":"Qihai Sun, Zhiwei Liu, Ming Chi, Ming‐Feng Ge, Dingxin He","doi":"10.20517/ir.2023.15","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of optimal coverage control for multiple unmanned surface vehicles (USVs) in the presence of time-varying disturbances. To solve this problem, the disturbance vector observer is designed to approximate the unknown time-varying disturbances. It is demonstrated that the estimated disturbance vector converges to the actual disturbance vector within a finite time. To achieve the optimal coverage effect of the task region, the control idea of layer-by-layer design is borrowed, and the desired velocities of the USV are designed. By following the desired velocities, the USV network can achieve the optimal coverage effect of the task region. Based on the estimated disturbances, a robust coverage controller is designed to achieve the tracking of desired velocities by the USV within a finite time, ultimately achieving optimal coverage effect of the task region by the USV network. Finally, corresponding simulation results are provided to validate the effectiveness of the proposed approach.","PeriodicalId":426514,"journal":{"name":"Intelligence & Robotics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust coverage control of multiple USVs with time-varying disturbances\",\"authors\":\"Qihai Sun, Zhiwei Liu, Ming Chi, Ming‐Feng Ge, Dingxin He\",\"doi\":\"10.20517/ir.2023.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of optimal coverage control for multiple unmanned surface vehicles (USVs) in the presence of time-varying disturbances. To solve this problem, the disturbance vector observer is designed to approximate the unknown time-varying disturbances. It is demonstrated that the estimated disturbance vector converges to the actual disturbance vector within a finite time. To achieve the optimal coverage effect of the task region, the control idea of layer-by-layer design is borrowed, and the desired velocities of the USV are designed. By following the desired velocities, the USV network can achieve the optimal coverage effect of the task region. Based on the estimated disturbances, a robust coverage controller is designed to achieve the tracking of desired velocities by the USV within a finite time, ultimately achieving optimal coverage effect of the task region by the USV network. Finally, corresponding simulation results are provided to validate the effectiveness of the proposed approach.\",\"PeriodicalId\":426514,\"journal\":{\"name\":\"Intelligence & Robotics\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence & Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ir.2023.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ir.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了存在时变干扰的多台无人水面车辆的最优覆盖控制问题。为了解决这一问题,设计了扰动矢量观测器来逼近未知的时变扰动。证明了估计的扰动向量在有限时间内收敛到实际扰动向量。为了实现任务区域的最优覆盖效果,借鉴逐层设计的控制思想,设计了无人潜航器的期望速度。通过遵循期望的速度,USV网络可以达到任务区域的最佳覆盖效果。基于估计的干扰,设计鲁棒覆盖控制器,实现USV在有限时间内对期望速度的跟踪,最终实现USV网络对任务区域的最优覆盖效果。最后给出了相应的仿真结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust coverage control of multiple USVs with time-varying disturbances
This paper investigates the problem of optimal coverage control for multiple unmanned surface vehicles (USVs) in the presence of time-varying disturbances. To solve this problem, the disturbance vector observer is designed to approximate the unknown time-varying disturbances. It is demonstrated that the estimated disturbance vector converges to the actual disturbance vector within a finite time. To achieve the optimal coverage effect of the task region, the control idea of layer-by-layer design is borrowed, and the desired velocities of the USV are designed. By following the desired velocities, the USV network can achieve the optimal coverage effect of the task region. Based on the estimated disturbances, a robust coverage controller is designed to achieve the tracking of desired velocities by the USV within a finite time, ultimately achieving optimal coverage effect of the task region by the USV network. Finally, corresponding simulation results are provided to validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信