使用最优神经模糊预测器进行功率预测

X.M. Gao, X.Z. Gao, S. Ovaska
{"title":"使用最优神经模糊预测器进行功率预测","authors":"X.M. Gao, X.Z. Gao, S. Ovaska","doi":"10.1109/IMTC.1997.612394","DOIUrl":null,"url":null,"abstract":"This paper presents a neuro-fuzzy predictor for received power level prediction in mobile communication systems. An important but difficult in designing such predictor is to the complexity of the predictor structure, i.e., the number of input nodes and the number of membership functions needed for each input node. We solve this problem by using the predictive minimum description length (PMDL) principle. This results in a predictor with excellent generalization capability. The optimized neuro-fuzzy predictor is then used for power prediction of simulated Rayleigh fading signals with 1.8 GHz carrier frequency. The results show that our optimized predictor can provide very accurate predictions of received signal power. Our neuro-fuzzy predictor is well suitable for applications where efficient compensation of fast fading and accurate power control are required.","PeriodicalId":124893,"journal":{"name":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Power prediction using an optimal neuro-fuzzy predictor\",\"authors\":\"X.M. Gao, X.Z. Gao, S. Ovaska\",\"doi\":\"10.1109/IMTC.1997.612394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neuro-fuzzy predictor for received power level prediction in mobile communication systems. An important but difficult in designing such predictor is to the complexity of the predictor structure, i.e., the number of input nodes and the number of membership functions needed for each input node. We solve this problem by using the predictive minimum description length (PMDL) principle. This results in a predictor with excellent generalization capability. The optimized neuro-fuzzy predictor is then used for power prediction of simulated Rayleigh fading signals with 1.8 GHz carrier frequency. The results show that our optimized predictor can provide very accurate predictions of received signal power. Our neuro-fuzzy predictor is well suitable for applications where efficient compensation of fast fading and accurate power control are required.\",\"PeriodicalId\":124893,\"journal\":{\"name\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.1997.612394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.1997.612394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种用于移动通信系统接收功率电平预测的神经模糊预测器。设计这种预测器的一个重要但困难的问题是预测器结构的复杂性,即输入节点的数量和每个输入节点所需的隶属函数的数量。我们采用预测最小描述长度(PMDL)原理来解决这个问题。这就产生了一个具有优秀泛化能力的预测器。然后将优化后的神经模糊预测器用于1.8 GHz载波频率下模拟瑞利衰落信号的功率预测。结果表明,优化后的预测器可以非常准确地预测接收到的信号功率。我们的神经模糊预测器非常适合于需要快速衰落的有效补偿和精确功率控制的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power prediction using an optimal neuro-fuzzy predictor
This paper presents a neuro-fuzzy predictor for received power level prediction in mobile communication systems. An important but difficult in designing such predictor is to the complexity of the predictor structure, i.e., the number of input nodes and the number of membership functions needed for each input node. We solve this problem by using the predictive minimum description length (PMDL) principle. This results in a predictor with excellent generalization capability. The optimized neuro-fuzzy predictor is then used for power prediction of simulated Rayleigh fading signals with 1.8 GHz carrier frequency. The results show that our optimized predictor can provide very accurate predictions of received signal power. Our neuro-fuzzy predictor is well suitable for applications where efficient compensation of fast fading and accurate power control are required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信