纳米器件仿真与可视化软件平台

M. Gayer, G. Iannaccone
{"title":"纳米器件仿真与可视化软件平台","authors":"M. Gayer, G. Iannaccone","doi":"10.1109/ACTEA.2009.5227880","DOIUrl":null,"url":null,"abstract":"NanoFEM platform is a new research environment based on the finite element method (FEM) for Technology CAD (TCAD) simulation and visualization of nanoscale devices, such as MOSFET transistors. The simulation in NanoFEM platform is based on solving partial differential equations corresponding to physical processes in modelled devices. A user or developer can provide these equations in a variational form format, and can define solver modules based on a FEM library with ability of automatic generation of finite elements and finite element forms. Solver modules can define fields for simulation and visualization and boundary conditions. Simple boundary conditions and material properties can also be specified directly in the graphical user interface. Geometry for the solved case can be defined either in graphical user interface or using Python scripting. Quality tetrahedral meshes necessary for FEM simulations are generated automatically. Visualization and post-processing is available in graphical user interface. We present some of related major existing solutions, namely open source geometry editors, mesh generators, computation libraries and visualization tools for FEM. We discuss major software components of the NanoFEM platform, i.e. Salome Platform and DOLFIN/FEniCS. We present an example simulation and visualization in NanoFEM platform. This is a simulation of the Poisson's equation on a 3D structure consisting of several geometry groups and materials forming a FinFET transistor with a mesh consisting of hundreds of thousands tetrahedrons. Because NanoFEM platform consists almost entirely of open source software components, others could eventually build similar solutions including, but not limited to TCAD device simulations after reading and reviewing the NanoFEM platform design and components.","PeriodicalId":308909,"journal":{"name":"2009 International Conference on Advances in Computational Tools for Engineering Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A software platform for nanoscale device simulation and visualization\",\"authors\":\"M. Gayer, G. Iannaccone\",\"doi\":\"10.1109/ACTEA.2009.5227880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NanoFEM platform is a new research environment based on the finite element method (FEM) for Technology CAD (TCAD) simulation and visualization of nanoscale devices, such as MOSFET transistors. The simulation in NanoFEM platform is based on solving partial differential equations corresponding to physical processes in modelled devices. A user or developer can provide these equations in a variational form format, and can define solver modules based on a FEM library with ability of automatic generation of finite elements and finite element forms. Solver modules can define fields for simulation and visualization and boundary conditions. Simple boundary conditions and material properties can also be specified directly in the graphical user interface. Geometry for the solved case can be defined either in graphical user interface or using Python scripting. Quality tetrahedral meshes necessary for FEM simulations are generated automatically. Visualization and post-processing is available in graphical user interface. We present some of related major existing solutions, namely open source geometry editors, mesh generators, computation libraries and visualization tools for FEM. We discuss major software components of the NanoFEM platform, i.e. Salome Platform and DOLFIN/FEniCS. We present an example simulation and visualization in NanoFEM platform. This is a simulation of the Poisson's equation on a 3D structure consisting of several geometry groups and materials forming a FinFET transistor with a mesh consisting of hundreds of thousands tetrahedrons. Because NanoFEM platform consists almost entirely of open source software components, others could eventually build similar solutions including, but not limited to TCAD device simulations after reading and reviewing the NanoFEM platform design and components.\",\"PeriodicalId\":308909,\"journal\":{\"name\":\"2009 International Conference on Advances in Computational Tools for Engineering Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Advances in Computational Tools for Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACTEA.2009.5227880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Computational Tools for Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2009.5227880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

纳米有限元平台是一种基于有限元法(FEM)的新型研究环境,用于对MOSFET晶体管等纳米器件进行技术CAD (TCAD)仿真和可视化。在纳米有限元平台上的仿真是基于求解与被模拟器件物理过程相对应的偏微分方程。用户或开发人员可以以变分形式提供这些方程,并可以基于具有自动生成有限元和有限元形式能力的有限元库定义求解器模块。求解器模块可以定义用于仿真、可视化和边界条件的字段。简单的边界条件和材料属性也可以直接在图形用户界面中指定。可以在图形用户界面中或使用Python脚本定义已解决案例的几何形状。自动生成有限元模拟所需的高质量四面体网格。图形用户界面提供可视化和后处理功能。我们介绍了一些相关的主要现有解决方案,即开源几何编辑器、网格生成器、计算库和FEM可视化工具。我们讨论了纳米有限元平台的主要软件组件,即Salome平台和DOLFIN/FEniCS。给出了一个在纳米有限元平台上的仿真和可视化实例。这是一个三维结构的泊松方程的模拟,由几个几何组和材料组成的FinFET晶体管由数十万个四面体组成。由于NanoFEM平台几乎完全由开源软件组件组成,因此在阅读和审查NanoFEM平台设计和组件后,其他人最终可以构建类似的解决方案,包括但不限于TCAD设备模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A software platform for nanoscale device simulation and visualization
NanoFEM platform is a new research environment based on the finite element method (FEM) for Technology CAD (TCAD) simulation and visualization of nanoscale devices, such as MOSFET transistors. The simulation in NanoFEM platform is based on solving partial differential equations corresponding to physical processes in modelled devices. A user or developer can provide these equations in a variational form format, and can define solver modules based on a FEM library with ability of automatic generation of finite elements and finite element forms. Solver modules can define fields for simulation and visualization and boundary conditions. Simple boundary conditions and material properties can also be specified directly in the graphical user interface. Geometry for the solved case can be defined either in graphical user interface or using Python scripting. Quality tetrahedral meshes necessary for FEM simulations are generated automatically. Visualization and post-processing is available in graphical user interface. We present some of related major existing solutions, namely open source geometry editors, mesh generators, computation libraries and visualization tools for FEM. We discuss major software components of the NanoFEM platform, i.e. Salome Platform and DOLFIN/FEniCS. We present an example simulation and visualization in NanoFEM platform. This is a simulation of the Poisson's equation on a 3D structure consisting of several geometry groups and materials forming a FinFET transistor with a mesh consisting of hundreds of thousands tetrahedrons. Because NanoFEM platform consists almost entirely of open source software components, others could eventually build similar solutions including, but not limited to TCAD device simulations after reading and reviewing the NanoFEM platform design and components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信