基于三局部描述符直方图的多模态人脸识别

A. Chouchane, M. Belahcene, A. Ouamane, S. Bourennane
{"title":"基于三局部描述符直方图的多模态人脸识别","authors":"A. Chouchane, M. Belahcene, A. Ouamane, S. Bourennane","doi":"10.1109/EUVIP.2014.7018380","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient framework of multimodal face recognition that explores 2D and 3D information based on the score level fusion. To solve the problems of illumination and expression variations, three local methods are introduced, Local Phase Quantization (LPQ), Three-Patch Local Binary Patterns (TPLBP) and Four-Patch Local Binary Patterns (TPLBP). After applying local descriptors to the input image (2D and 3D), this latter is divided into sub-regions or rectangular blocks. Then, the histogram of each sub-region is extracted and concatenated into a single features vector. Principal Component Analysis (PCA) and Enhanced Fisher linear discriminate Model (EFM) are used to reduce the dimensionality. Classification is then performed using the robust Support Vector Machine (SVM) classifier. Finally, score level fusion is used to improve the recognition performance. Experiments are implemented on CASIA3D face database. Our results show that the proposed approach achieves very high performance with RR=98.65% and EER=0.67%.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"10 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multimodal face recognition based on histograms of three local descriptors using score level fusion\",\"authors\":\"A. Chouchane, M. Belahcene, A. Ouamane, S. Bourennane\",\"doi\":\"10.1109/EUVIP.2014.7018380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient framework of multimodal face recognition that explores 2D and 3D information based on the score level fusion. To solve the problems of illumination and expression variations, three local methods are introduced, Local Phase Quantization (LPQ), Three-Patch Local Binary Patterns (TPLBP) and Four-Patch Local Binary Patterns (TPLBP). After applying local descriptors to the input image (2D and 3D), this latter is divided into sub-regions or rectangular blocks. Then, the histogram of each sub-region is extracted and concatenated into a single features vector. Principal Component Analysis (PCA) and Enhanced Fisher linear discriminate Model (EFM) are used to reduce the dimensionality. Classification is then performed using the robust Support Vector Machine (SVM) classifier. Finally, score level fusion is used to improve the recognition performance. Experiments are implemented on CASIA3D face database. Our results show that the proposed approach achieves very high performance with RR=98.65% and EER=0.67%.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"10 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种高效的基于分数水平融合的多模态人脸识别框架,该框架探索二维和三维信息。为了解决光照和表达变化的问题,引入了三种局部相位量化方法:局部相位量化(LPQ)、三斑块局部二进制模式(TPLBP)和四斑块局部二进制模式(TPLBP)。在对输入图像(2D和3D)应用局部描述符后,将后者划分为子区域或矩形块。然后,提取每个子区域的直方图并拼接成单个特征向量。采用主成分分析(PCA)和增强Fisher线性判别模型(EFM)进行降维。然后使用鲁棒支持向量机(SVM)分类器进行分类。最后,采用分数水平融合提高识别性能。实验在CASIA3D人脸数据库上进行。结果表明,本文提出的方法取得了非常高的性能,RR=98.65%, EER=0.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal face recognition based on histograms of three local descriptors using score level fusion
In this paper, we propose an efficient framework of multimodal face recognition that explores 2D and 3D information based on the score level fusion. To solve the problems of illumination and expression variations, three local methods are introduced, Local Phase Quantization (LPQ), Three-Patch Local Binary Patterns (TPLBP) and Four-Patch Local Binary Patterns (TPLBP). After applying local descriptors to the input image (2D and 3D), this latter is divided into sub-regions or rectangular blocks. Then, the histogram of each sub-region is extracted and concatenated into a single features vector. Principal Component Analysis (PCA) and Enhanced Fisher linear discriminate Model (EFM) are used to reduce the dimensionality. Classification is then performed using the robust Support Vector Machine (SVM) classifier. Finally, score level fusion is used to improve the recognition performance. Experiments are implemented on CASIA3D face database. Our results show that the proposed approach achieves very high performance with RR=98.65% and EER=0.67%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信