体积勘探使用椭球高斯传递函数

Yunhai Wang, Wei Chen, Guihua Shan, Tingxing Dong, Xue-bin Chi
{"title":"体积勘探使用椭球高斯传递函数","authors":"Yunhai Wang, Wei Chen, Guihua Shan, Tingxing Dong, Xue-bin Chi","doi":"10.1109/PACIFICVIS.2010.5429612","DOIUrl":null,"url":null,"abstract":"This paper presents an interactive transfer function design tool based on ellipsoidal Gaussian transfer functions (ETFs). Our approach explores volumetric features in the statistical space by modeling the space using the Gaussian mixture model (GMM) with a small number of Gaussians to maximize the likelihood of feature separation. Instant visual feedback is possible by mapping these Gaussians to ETFs and analytically integrating these ETFs in the context of the pre-integrated volume rendering process. A suite of intuitive control widgets is designed to offer automatic transfer function generation and flexible manipulations, allowing an inexperienced user to easily explore undiscovered features with several simple interactions. Our GPU implementation demonstrates interactive performance and plausible scalability which compare favorably with existing solutions. The effectiveness of our approach has been verified on several datasets.","PeriodicalId":149295,"journal":{"name":"2010 IEEE Pacific Visualization Symposium (PacificVis)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Volume exploration using ellipsoidal Gaussian transfer functions\",\"authors\":\"Yunhai Wang, Wei Chen, Guihua Shan, Tingxing Dong, Xue-bin Chi\",\"doi\":\"10.1109/PACIFICVIS.2010.5429612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an interactive transfer function design tool based on ellipsoidal Gaussian transfer functions (ETFs). Our approach explores volumetric features in the statistical space by modeling the space using the Gaussian mixture model (GMM) with a small number of Gaussians to maximize the likelihood of feature separation. Instant visual feedback is possible by mapping these Gaussians to ETFs and analytically integrating these ETFs in the context of the pre-integrated volume rendering process. A suite of intuitive control widgets is designed to offer automatic transfer function generation and flexible manipulations, allowing an inexperienced user to easily explore undiscovered features with several simple interactions. Our GPU implementation demonstrates interactive performance and plausible scalability which compare favorably with existing solutions. The effectiveness of our approach has been verified on several datasets.\",\"PeriodicalId\":149295,\"journal\":{\"name\":\"2010 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2010.5429612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2010.5429612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于椭球高斯传递函数的交互式传递函数设计工具。我们的方法通过使用少量高斯混合模型(GMM)对空间进行建模来探索统计空间中的体积特征,以最大化特征分离的可能性。通过将这些高斯函数映射到etf,并在预集成的体绘制过程中对这些etf进行分析整合,可以实现即时视觉反馈。一套直观的控制部件旨在提供自动传递函数生成和灵活的操作,允许没有经验的用户通过几个简单的交互轻松探索未发现的功能。我们的GPU实现展示了与现有解决方案相比有利的交互性能和合理的可扩展性。我们的方法的有效性已经在几个数据集上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume exploration using ellipsoidal Gaussian transfer functions
This paper presents an interactive transfer function design tool based on ellipsoidal Gaussian transfer functions (ETFs). Our approach explores volumetric features in the statistical space by modeling the space using the Gaussian mixture model (GMM) with a small number of Gaussians to maximize the likelihood of feature separation. Instant visual feedback is possible by mapping these Gaussians to ETFs and analytically integrating these ETFs in the context of the pre-integrated volume rendering process. A suite of intuitive control widgets is designed to offer automatic transfer function generation and flexible manipulations, allowing an inexperienced user to easily explore undiscovered features with several simple interactions. Our GPU implementation demonstrates interactive performance and plausible scalability which compare favorably with existing solutions. The effectiveness of our approach has been verified on several datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信